NAME ______UCLA ID _____

You have 90 minutes to complete this exam. You may assume without proof any statement proved in class.

1 Consider the following context-free grammar:

$$S \to SS \mid T$$
$$T \to aT \mid aTb \mid ab \mid a.$$

(1 pts)	a.	Describe the language generated by this grammar.
(1 pts)	b.	Prove that this grammar is ambiguous.
(2 pts)	c.	Give an equivalent unambiguous grammar.

Solution.

a. Nonempty strings of the form $a^{N_1}b^{n_1}a^{N_2}b^{n_2}\dots a^{N_k}b^{n_k}$, where

$$N_1 \ge n_1,$$
$$N_2 \ge n_2,$$
$$\vdots$$
$$N_k \ge n_k.$$

b. The string *aab* has at least two parse trees:

$$S \qquad S \\ | \\ T \qquad I \\ a T \qquad a T \\ a b \qquad a \\ A b \qquad B \\ A$$

c. $S \rightarrow AS \mid TS \mid A \mid T$ $A \rightarrow aA \mid a$ $T \rightarrow aTb \mid ab.$

- 2 Give context-free grammars for the following languages over the binary alphabet:
- (2 pts)a. nonempty even-length strings with the two middle symbols equal(2 pts)b. strings with twice as many 0s as 1s
- (3 pts) **c.** $\{0^n 1^m : n < m < \frac{2015}{2014}n\}.$

Solution:

a. $S \to \Sigma S \Sigma \mid 00 \mid 11$ $\Sigma \to 0 \mid 1$ **b.** $S \to 1S0S0S \mid 0S1S0S \mid 0S0S1S \mid \varepsilon$ **c.** $S \to 0S1 \mid 0T1$ $T \to 0^{2014}T1^{2015} \mid 0^{2014}1^{2015}$

3 True or false? Prove your answer.

(2 pts) **a.** If *L* is context-free, then the set of all substrings of strings in *L* is a context-free language.

(3 pts) **b.** If L is not context-free and F is finite, then $L \setminus F$ is not context-free.

Solution.

- **a.** True. The set of all substrings of strings in L is prefix(suffix(L)), which is context-free whenever L is context-free (by the closure of context-free languages under prefix and suffix).
- **b.** True. We will prove the contrapositive: if F is finite and $L \setminus F$ context-free, then L is context-free. For this, write

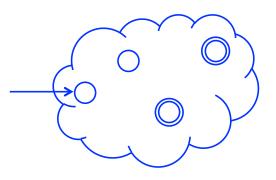
$$L = (L \setminus F) \cup (L \cap F).$$

For any finite F, the language $L \cap F$ is also finite, hence regular, hence context-free. We conclude that, with F finite and $L \setminus F$ context-free, L is the union of two context-free languages and is therefore itself context-free (by the closure of context-free languages under union).

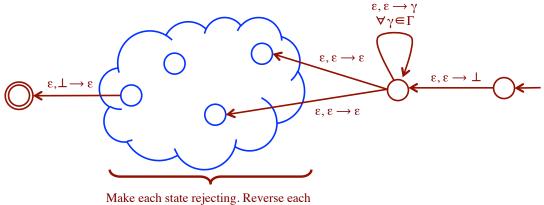
(3 pts) 4 Let L be a given context-free language. Explain how to obtain a PDA for reverse(L) from a PDA for L.

Your solution must not involve context-free grammars in any way. In particular, the following argument must not be used: convert the PDA to a grammar, reverse each rule, and convert back to a PDA.

Solution. The transformation is similar to that for DFAs and NFAs, except that one must now be careful not to forget about the stack. Suppose that, schematically, the original PDA $(Q, \Sigma, \Gamma, \delta, q_0, F)$ looks like this:



Fix a symbol, say \perp , that is not currently in Γ . To obtain a PDA for reverse(L), we make the structural changes shown in red:



Make each state rejecting. Reverse each arrow and change its label from $\sigma, \gamma \rightarrow \gamma'$ to $\sigma, \gamma' \rightarrow \gamma$

The added loop plays a vital role in this construction. Its purpose is to "guess" the final contents of the stack for some accepting computation and to populate the stack accordingly.

- 5 For each of the following languages over the binary alphabet, determine whether it is context-free and prove your answer:
- (2 pts) **a.** $\{wvw : w \in \{0, 1\}^+, v \in \{0, 1\}^*\}$
- (2 pts) **b.** $\{0^n 1^m 0^k 1^{n+m} : n, m, k \ge 0\}$
- (2 pts) c. palindromes with equally many 0s and 1s.

Solution. In all parts, L stands for the language is question.

- **a.** Not context-free. Take an arbitrary integer $p \ge 1$ and consider the string $w = 0^p 1^p 0^p 1^p \in L$. Fix any decomposition w = uvxyz for some strings u, v, x, y, z with $|v| + |y| \ne 0$ and $|vxy| \le p$. There are two cases to examine: (i) if vxy is contained entirely within the first p symbols or entirely within the last p symbols, then $uv^2xy^2z \ne L$ (here, it is crucial that we pump up rather than down); (ii) if vxy overlaps with the middle 2p characters of w, then $uxz \notin L$. By the pumping lemma, L is not context-free.
- **b.** Context-free, with grammar

$$S \to 0S1 \mid T$$
$$T \to 1T1 \mid U$$
$$U \to 0U \mid \varepsilon.$$

c. Not context-free. Take an arbitrary integer $p \ge 1$ and consider the string $1^{p}0^{2p}1^{p} \in L$. Fix any decomposition $1^{p}0^{2p}1^{p} = uvxyz$ for some strings u, v, x, y, z with $|v|+|y| \ne 0$ and $|vxy| \le p$. There are two cases to examine: (i) if $v \in 0^*$ and $y \in 0^*$, then uv^2xy^2z contains more 0s than 1s and hence is not in L; (ii) if v or y contains a 1, then the length restriction $|vxy| \le p$ implies that uxz contains unequal numbers of 1s on the left and on the right and therefore is not a palindrome: $uxz \notin L$. By the pumping lemma, L is not context-free.