NAME ______UCLA ID ______

You have 90 minutes to complete this exam. You may assume without proof any statement proved in class.

- **1** Give a regular expression for each of the following languages:
- (2 pts) **a.** strings of length at most 2015 over a given alphabet Σ ;
- (3 pts) **b.** binary strings in which the number of 0s and the number of 1s are not both odd.

Solution.

- a. $(\Sigma \cup \varepsilon)^{2015}$
- **b.** $1^*(01^*01^*)^* \cup 0^*(10^*10^*)^*$. There is a hard way to solve this problem and an easy one. The hard way is to construct an NFA and convert it to a regular expression. The easy way is to observe that this language is the union of two simpler languages: (i) binary strings with an even number of 0s, and (ii) binary strings with an even number of 1s.

(2 pts) 2 Simplify $(0 \cup 1)^* 01(0 \cup 1)^* \cup 1^*0^*$ as much as possible, and explain your answer in detail.

Solution. The regular expression $(0 \cup 1)^* 01(0 \cup 1)^*$ corresponds to binary strings that contain 01. The only strings that do not have this property are of the form 1^*0^* . Thus, the union of $(0 \cup 1)^* 01(0 \cup 1)^*$ and 1^*0^* simplifies to $(0 \cup 1)^*$.

(3 pts) **3** Prove or disprove: the Kleene star of every language is a regular language.

Solution. The claim is false. Consider $L = \{0^n 1^n : n \ge 0\}$. Then L^* is the set of strings of the form $0^{n_1} 1^{n_1} 0^{n_2} 1^{n_2} \cdots 0^{n_k} 1^{n_k}$ for some n_1, n_2, \ldots, n_k . Let p be arbitrary and consider the string $w = 0^p 1^p \in L^*$. If x, y, z are strings such that y is nonempty, $|xy| \le p$, and w = xyz, then $xy^2z \notin L^*$. Therefore by the pumping lemma, L^* is nonregular.

(3 pts) 4 Let L be the language of palindromes over $\{0, 1\}$. Determine the equivalence classes of \equiv_L .

Solution. Let u, v be arbitrary strings with $u \neq v$. Then for N sufficiently large,

$$u \ \mathbf{01}^{N} \mathbf{0} u^{R} \in L,$$
$$v \ \mathbf{01}^{N} \mathbf{0} u^{R} \notin L.$$

Thus, every string is in an equivalence class by itself.

Note. A common mistake is to claim that $uu^{\mathbb{R}} \in L, vu^{\mathbb{R}} \notin L$ for any pair of distinct strings u, v. This claim fails for many string pairs, e.g., 0, 00 as well as 0, 01010101.

(4 pts) 5 Construct a DFA for $0^*1^*0^+$ with the smallest possible number of states. Prove that your DFA is the smallest possible.

Solution. The following DFA with five states recognizes $0^*1^*0^+$:

The five strings ε , 0, 1, 10, 101 are in pairwise distinct equivalence classes of $\equiv_{0^*1^*0^+}$, with distinguishing suffixes given by the following table:

	ε	0	1	10	101
ε					
0	ε				
1	010	010			
10	10	10	10		
101	0	0	0	0	

By the Myhill-Nerode theorem, we conclude that no smaller DFA exists.

6 For each of the following languages, determine whether it is regular, and prove your answer:
(2 pts)

a. binary strings in which the number of 1s is a multiple of the number of 0s;
(2 pts)
b. binary strings of the form uvuw, where u, v, w are strings and u is nonempty;
(2 pts)
c. nonempty binary strings of even length with the two middle symbols unequal;
(2 pts)
d. strings over the alphabet {a, b, c} that contain each of the three alphabet symbols.

Solution.

In each part, L stands for the language in question.

- **a.** Nonregular. For any positive integers i < j, we have $0^i \mathbf{1}^i \in L$ but $0^j \mathbf{1}^i \notin L$. Therefore, the strings $0, 00, 000, \dots, 0^n, \dots$ are each in a distinct equivalence class of \equiv_L . By the Myhill-Nerode theorem, L is nonregular.
- **b.** Regular. This language contains precisely those strings in which the first symbol occurs again, which corresponds to the regular expression $1\Sigma^* 1\Sigma^* \cup 0\Sigma^* 0\Sigma^*$.
- **c.** Nonregular. For any even positive integers $i \neq j$, we have $0^i \mathbf{1}^i \in L$ but $0^j \mathbf{1}^i \notin L$. Therefore, the strings $0^2, 0^4, \ldots, 0^{2n}, \ldots$ are each in a distinct equivalence class of \equiv_L . By the Myhill-Nerode theorem, L is nonregular.
- **d.** Regular. The language is given by $\overline{\{a,b\}^* \cup \{a,c\}^* \cup \{b,c\}^*}$. Thus, it is obtained by applying the operations of Kleene star, union, and complement to the regular languages $\{a,b\}, \{a,c\}, \{b,c\}$. Since regular languages are closed under these operations, the result is regular.