CS 181A EXAM #1 NAME ________________________________ SPRING 2014 UCLA ID ________________________________

You have 90 minutes to complete this exam. You may assume without proof any statement proved in class.

(3 pts) 1 Give a simple verbal description of the language recognized by the following DFA.

Solution. All binary strings that contain 0010.

- 2 Draw NFAs for the following languages, taking full advantage of nondeterminism:
-
-
- (2 pts) **a.** strings over alphabet $\{0, 1, \ldots, 9\}$ where the final digit has appeared before;
- (2 pts) b. binary strings in which there is a pair of 0s separated by a number of positions that is a multiple of 4.

- 3 Prove that the following languages over the binary alphabet are regular:
- (2 pts) a. strings in which the number of 0s and the number of 1s are both even;
- (2 pts) b. strings with at most one occurrence of the substring 00 (the string 000 has two);
- (2 pts) **c.** strings in which the $1000th$ symbol from the end is a 1.

Solution.

a. The language is recognized by the following DFA:

b. The complement of this language is recognized by the following NFA and is therefore regular:

Since regular languages are closed under complement, the original language is regular as well.

c. To recognize this language, a DFA simply needs to keep track of the last 1000 symbols seen, and accept if and only if there is a 1 in position 1000. Formally, the language is recognized by the DFA

$$
(\{0, 1\}^{1000}, \{0, 1\}, \delta, 0^{1000}, 1\{0, 1\}^{999}),
$$

where $\delta(w_1w_2w_3 \ldots w_{1000}, \sigma) = w_2w_3 \ldots w_{1000}\sigma$.

(3 pts) 4 Let L be a regular language over the binary alphabet. Consider the following language over the same alphabet: $L' = \{w : |w| = |u| \text{ for some } u \in L\}$. Prove that L' is regular.

Solution. To obtain an NFA for L' , start with a DFA for L and change all edge labels to "0, 1".

(3 pts) 5 Prove that at most $k^{2k+1}2^k$ languages over the binary alphabet can be recognized by a DFA with k states.

> *Solution*. Simply count the number of distinct DFAs with k states. Name the states $1, 2, 3, \ldots, k$. Then a DFA is a tuple

 $\{(1, 2, 3, \ldots, k\}, \{0, 1\}, \delta, q_0, F),$

where

$$
q_0 \in \{1, 2, 3, ..., k\}
$$

$$
F \subseteq \{1, 2, 3, ..., k\},
$$

$$
\delta : \{1, 2, 3, ..., k\} \times \{0, 1\} \rightarrow \{1, 2, 3, ..., k\}.
$$

Thus, the number of distinct ways to choose (q_0, F, δ) is

 $k \times 2^k \times k^{2k}$.

(3 pts) 6 For a language $L \subseteq \Sigma^*$, define insert $(L) = \{u\sigma v : uv \in L, \sigma \in \Sigma\}$. Thus, insert (L) is the set of all strings obtained by taking a string in L and inserting a new character at some position. Prove that if L is regular, so is insert (L) .

Solution:

(3 pts) 7 For a language L, define suffix $(L) = \{v : uv \in L \text{ for some } u\}$. Thus, suffix (L) is the set of all suffixes of strings in L . Use the closure of regular languages under the reverse and prefix operations to prove that suffix (L) is regular whenever L is regular.

Solution. To generate the suffixes of all strings in L , one can reverse the strings in L , generate all prefixes in the resulting language, and finally reverse the resulting strings. Thus,

 $\text{suffix}(L) = \text{reverse}(\text{prefix}(\text{reverse}(L))).$

Since L is regular and regular languages are closed under the prefix and reverse operations, it follows that $\text{suffix}(L)$ is regular.