
Name:

Student ID:

CS181 Winter 2012 - Final Exam
Due Friday, March 16, 2012, at 4:00pm, in Royce 362

� This exam is open-book and open-notes, but any materials not used in this course are
prohibited, including any material found on the internet. Collaboration is, of course, also
prohibited. Please avoid temptation by not working on the examination while you
are in the presence of any other student who has taken or is currently taking CS
181. If you have any questions about the exam, ask the TA or Professor Sahai. Do
not ask other students. You are allowed to use any theorem shown in class or in the
textbook, as long as you clearly cite it.

� We suggest that you spend approximately 12 hours (not necessarily contiguous) to take this
exam. Start early so that you have time to understand and think about the problems. It
must be turned in by 4:00 P.M on Friday, March 16, 2012. Please turn it personally to the
TA from 2-4pm at Royce 362. You may also turn it during the TA office hours on Thursday,
March 15, 2012 from 11-1 at BH3714. If you need an alternate slot, email us to schedule one.

� Place your name and UID on every page of your solutions. Please use separate pages for
each question. All problems require clear and well written explanations.

� For each part (except for the extra credit), 20% of the points will be given if instead of an
answer, your write “I don’t know”.

Honor Code Agreement: I understand this exam is open-book and open-notes, but any ma-
terials not used in this course are strictly prohibited. I also understand that this exam is to be
taken individually without any outside help (except possibly from the professor or the TA) within
the time limits set forth. I agree to adhere to the course honor code and if I am unsure of any
rules of the honor code, I will ask for clarification from the professor or the TA.

Signature:

Question Points
1 45
2 45
3 40
4 45

EC 40
Total

Name:

Student ID:

1. 2-Counter Automata. A 2-counter automata is a DFA augumented with two counters. At
the start of computation, the counters begin at 0. A 2-counter automata may consult the
value of its of counters before making a state transition. At each transition, the automata
may also add 1, subtract 1 or do nothing to one or both counters. Formally, a 2-counter
automata is a 5-tuple (Q,Σ, δ, q0, F) where all components except δ are identical to a DFA.
The transition function δ is defined as δ : Q× Z× Z× Σ→ Q× {+,−, 0} × {+,−, 0} which
defines transitions from a particular state, counter values and input alphabet and describes
the modifications to the counters. As an example, δ(q5,−2, 5, a) = (q10,−, 0) would be a
transition which the automata would make if it is in state q5 and the first counter is at −2
and the second counter is at 5 and the input symbol is a. The automata moves to the state
q10 and subtracts 1 from the first counter, and makes no change to the second counter.

Note that in a 2-counter automata, the set of states Q is finite. Note also that a 2-counter
automata is deterministic.

(a) (10 pts.) Show that there exists a 2-counter automata that accepts the language
L1 = {0n1n2n | n ≥ 0}. Provide a rigorous construction.

(b) Let L = {w#wR | w ∈ {0, 1}∗}. This problem shows that L is not accepted by any
2-counter automata.

i. (1 pt.) How many different strings of the form w#wR exist whose length is 2n+ 1?

ii. (9 pts.) Consider a 2-counter automata with |Q| = `. Define the configuration of a
2-counter automata as the tuple (q, a, b) where q ∈ Q and a ∈ Z is the value of the
first counter and b ∈ Z is the value of the second counter. How many different
configurations could a 2-counter automata be in after consuming n input
characters from the alphabet {0, 1}?

iii. (15 pts.) Let M be any 2-counter automata. Using parts (i), (ii) and the pigeon
hole principle, show that there must exist an integer n > 0, there must exist two
distinct binary strings x, y ∈ {0, 1}n, and there must exist a configuration (q, a, b)
such that: M(x) and M(y) both reach the same configuration (q, a, b) after
processing their input.

iv. (10 pts.) Use the previous part to conclude that no 2-counter automata accepts L.

Name:

Student ID:

2. Oracle Machines and Diagonalization. An oracle for a language L is a magical
deterministic device which can, in a single computational step, read an input w and return
the answer to the question “is w ∈ L?”. An oracle machine is a Turing Machine with the
ability to query an oracle. (The textbook also discusses oracle machines in section 6.3)

This magical power is more formally described by stating that an oracle Turing Machine has
a special tape called the oracle tape and a special state qoracle. Whenever the machine enters
the state qoracle, let w be the string found on the oracle tape. This entire tape is then
magically erased and replaced with the string 1 if w ∈ L or 0 if w 6∈ L. A Turing Machine M
with access to an oracle to decide a language L is denoted by ML. Such an oracle-machine is
formally described by an 8-tuple: (Q,Σ,Γ, δ, q0, qaccept, qreject, qoracle).

As an example, consider the following language
L = HALTTM = {〈M,x〉 |M halts on input x}. Using an oracle for L one can construct a
oracle Turing Machine ML which decides ATM as follows:

On input w:

� Let w = 〈N, x〉 be the input.

� Write 〈N, x〉 to the oracle tape and enter the state
qoracle.

� If the oracle tape contains a 1, then we know that N
halts on x. Run N on x and accept if N accepts and
reject if N rejects.

� If the oracle tape contains a 0, then we know that N
does not halt on x. Reject the input w.

(a) (10 pts.) Show that every Turing Recognizable language (with respect to ordinary
Turing Machines) is decidable by some HALTTM -oracle Turing Machine.

(b) (1 pt.) Let L be any fixed language. Show that the number of L-oracle Turing
Machines is countably infinite.

(c) (19 pts.) Construct a specific language Lu which is not recognizable by any
HALTTM -oracle Turing Machine.

(d) (15 pts.) Construct a specific language G such that some G-oracle Turing Machine
decides the language Lu that you constructed above.

Name:

Student ID:

3. Turing Cards. Alice and Bob are playing the card game, Turing Cards. Turing Cards is a
game played with a given finite deck of cards. Let Λ = {1, 2, 3, . . . , `} denote the various
types of cards in play. The players have an inexhaustible supply of each type of card.

The game has two stages. First Bob places the card 1 on the table. Then he declares a finite
number of replacement rules. A replacement rule is a sequence of up to three cards which
can be replaced by any other sequence of up to three cards. For example, a rule might be
replace the card 1 with the sequence of cards 634 (written 1 ⇒ 634). As an example, Bob
might declare the rules:

R = {1⇒ 634, 634⇒ 931, 31⇒ 613, 1⇒ 55, 965⇒ 2}. The last rule says that one can
replace the sequence of cards 965 with the card 2.

Let R be the set of rules. Formally R is a finite subset of (Λ ∪ Λ2 ∪ Λ3)× (Λ ∪ Λ2 ∪ Λ3)

Once Bob sets up the rules, it is Alice’s turn to play. The second stage of the game consists
of Alice repeatedly replacing any valid sequence of cards based on the replacement rules set
by Bob. For example, given the rules above, Alice could change the initial card “1” in the
following manner.

1→ 634→ 931→ 9613→ 96553→ 253

Above, the boldfaced cards are the ones corresponding to the left-hand-side of the rule that
is about to be applied in the next move of Alice.

Alice wins the game if she makes the card 2 appear on the table. Bob wins the game
otherwise. We are interested in studying whether Alice can win the game given a particular
set of rules declared by Bob. Let ALICE be the language

ALICE = {(Λ, R) | Alice has a winning strategy with cards Λ and rules R}

� (40 pts.) Show that the language ALICE is undecidable.

Name:

Student ID:

4. Recursion Theorem. Recall that ETM = {〈M〉 | L(M)is the empty set} is not Turing
Recognizable. We would like to use the recursion theorem to prove this. Suppose not, i.e say
ETM is Turing Recognizable,

(a) (25 pts.) Let R be a purported recognizer for ETM . Use the recursion theorem and
construct a Turing Machine M on which R behaves incorrectly. More precisely, find a
Turing Machine M such that either :

� L(M) is the empty set, but R does not accept 〈M〉, OR:

� L(M) is not the empty set, but R accepts 〈M〉.
(b) (20 pts.) Let ALLTM = {〈M〉 | L(M) = Σ∗}. Just as in part (a), we will show that

ALLTM is not Turing Recognizable using the recursion theorem.

Suppose not and say ALLTM is Turing Recognizable, then let S be a purported
recognizer for ALLTM . Use the recursion theorem and construct a Turing Machine N
on which S behaves incorrectly. More precisely, find a Turing Machine N such that
either :

� L(N) = Σ∗ but S does not accept 〈N〉, OR:

� L(N) 6= Σ∗ but S accepts 〈N〉.

Name:

Student ID:

5. m-Love (Extra Credit Problem). Let Σ = {0, 1}, and let m be any positive number.
Two strings w,w′ are defined to be in m-Love, if one can obtain w′ from w by inserting or
deleting km-0’s and `m-1’s (at any positions) for any arbitary integers k, `. In other words,
given a string w, you can make a string that is in m-love with w by inserting or deleting
any-multiple-of-m number of 0’s, and any-multiple-of-m number of 1’s from w.

For example the strings 10110, 111 are in 2-Love, since 111 can be formed by removing 2 0’s
from 10110. As another example, the set of strings
{101100, 000, 111, 000000, ε, 001100110101} are all in 3-Love with each other.

For any language L, define m-Love(L) as the set of strings which are in m-Love with some
string in L. Formally,

m-Love(L) = {x ∈ {0, 1}∗ | ∃w ∈ L : w and x are in m-Love}

� (40 pts.) Let L be any language (possibly undecidable!). Show that 511-Love(L) is a
regular language.

Final

Maksim Rozentsveyg 003692329

March 16, 2012

Maksim
Rectangle

Maksim
Typewriter

Maksim
Typewriter

Maksim
Typewriter

Maksim
Typewriter

Maksim
Typewriter

Maksim
Typewriter
Score on this exam: 88/220 (40%)

Rank : 45/87

High: 190 (86%)

Low: 24 (11%)

Median: 89 (40%)

Mean: 100 (45%)

Maksim
Typewriter

Maksim Rozentsveyg 003692329

1 2-Counter Automata.

1.1 (a)

We create a 2CA for this language as follows. We recall from class that a PDA can decide the
language Leq = {0n1n|n ≥ 0}. The PDA pushed to the stack when reading a 1 and popped from the
stack when reading a 0; it had an empty stack when the number of 0’s equaled the number of 1’s. A
PDA is an NFA with a stack, so the idea then is to create a DFA that uses each counter as a stack.

One counter will ensure we have the same amount of 1’s and 0’s, and the other will ensure we have
the same amount of 2’s and 0’s. Each time we read a 1, we can add to the first counter, and each time
we read a 2, we can add to the other counter. But each time we read a 0, we should subtract from both
counters. The only way that we will have the same number of 0’s, 1’s, and 2’s is if both counters are
empty at the end of the input; this will show that the amount of 0’s equals the amount of 1’s, and the
amount of 0’s equals the amount of 2’s. Then by the transitive property, the amount of 0’s equals the
amount of 1’s equals the amount of 2’s.

We manage our input by having one state q0 that the machine is in when the counters are zero,
and another state q1 for when the counters aren’t zero. We remain in q1 on any input except when the
counters are both almost zero, in which case we move back to q0 when reading an input that will zero
out the counters. In addition we make q0 (our initial state) an accepting state because the empty string
ϵ is part of the language, too (when n = 0). The formal construction for the 2CA M1 is:

M1 = (Q,Σ, δ, q0, F)

Q = {q0, q1}
Σ = {0, 1}
δ = as drawn.

q0 = q0

F = {q0}

q0

q1

(0, 0, 0) → (−,−)
(0, 0, 1) → (+, 0)
(0, 0, 2) → (0,+)

(1, 1, 0) → (−,−)
(−1, 0, 1) → (+, 0)
(0,−1, 2) → (0,+)

(x, y, 0) → (−,−) ∀x, y ∈ Z \ {1}
(x, y, 1) → (+, 0) ∀x ∈ Z \ {−1}, y ∈ Z \ {0}
(x, y, 2) → (0,+) ∀x ∈ Z \ {0}, y ∈ Z \ {−1}

I

Maksim
Rectangle

Maksim
Rectangle

Maksim Rozentsveyg 003692329

1.2 (b)

1.2.1 (i)

If a string w#wR has length 2n+ 1, then |w| = 2n+1−1
2

= n. Every character in w can be 0 or 1, so
there are 2n ways to create a string w. This means there are 2n ways to create a string wwR, since wR

depends on w directly. Adding a # to the middle does not change the amount of ways we can create
w, either, since # is not part of w. So, there are 2n different strings of the form w#wR whose length
is 2n+ 1.

1.2.2 (ii)

The number of configurations is the product of the number of ways each element in the tuple
could be assigned. q could have up to l different assignments, since there are l states total. As for
a and b, both are bounded by ±n, since after an input is read, we can (at the maximum) increase
both counters each time or decrease both counters each time. So, the amount of different values the
counters may each take is 2n+ 1. This means after n steps, the total amount of configurations (q, a, b)
is l(2n+ 1)(2n+ 1) = l(2n+ 1)2.

1.2.3 (iii)

We see that if a machine 2CA M runs for n steps, it has parsed n characters of the input string,
and the amount of configurations it could be in is l(2n+1)2, and . However, an input string of length n
can have 2n configurations. Suppose we have 2 distinct strings x and y, both of length greater than or
equal to n. By the Pigeonhole Principle, the amount of strings possible to be processed by the machine
in n steps is greater than the amount of possible configurations for the machine to be in. So, M(x)
and M(y) can reach the same configuration as long as the input string’s length is greater than n. In
addition, n must be greater than 0; if the strings have length 0, then 2n ≥ l(2n+ 1)2 potentially.

1.2.4 (iv)

The input to L is a string s = w#wR. If |w| = n, then there are 2n ways to construct such a string.
The machine, however, can only be in up to l(2n+ 1)2 configurations, so by the Pigeonhole Principle,
one configuration is repeated at least once. Since some configuration is visited more than once, than
we can isolate two distinct characters ci and cj (i ̸= j, j > i) upon which the machine is in the same
configuration. We can then pump all characters in the string cici+1ci+2 . . . cj−1 within s to create a new
string s′, and still produce a string that is accepted by L. This is because repeating those characters
will still cause us to reach the same configuration before processing the repeated portion of the string,
it will still cause the machine enter the same configuration once cj is processed each time, and will still
cause the machine to proceed as usual from the character cj and onwards. This property holds for all
2CA’s.

However, there is no part of the string w#wR, where |w| = n, that can be repeated to produce a
string still in the language. Repeating the entire first portion w or the entire last portion wR would
cause the part before the # to not be equal to the reverse of the part after the #. Repeating any
portion containing the # would result in a string with too many #’s. So, there is no way to pump a
portion of any string in L. This means no 2CA can accept L.

II

Maksim
Rectangle

Maksim
Rectangle

Maksim Rozentsveyg 003692329

2 Oracle Machines and Diagonalization.

2.1 (a)

The problem is solved as follows. Given a recognizer, we know that the machine may accept an
input w, reject it, or loop indefinitely. A decider, however, will accept some input w, or reject it, but
never loop forever. So to turn a recognizer into a decider, we need to reject when the machine loops
infinitely on an input. We can use the HALTTM -oracle Turing Machine example (denoted HL) to
detect when an endless loop occurs, and reject the input that caused it. If the recognizer is rejected,
we can reject the input overall; this is because an input that causes a TM to loop forever will never be
in the language of the TM. If the recognizer is accepted, the input will never cause an infinite loop, so
we can simply run our recognizer on the input and return its result (accept or reject).

So, given a Turing Recognizable language LRE and its recognizer ML, we can create a corresponding
decider DL

L as follows:

DL
L = “On input string w:
1. Let w = ⟨ML, w⟩ be the input.
2. Write ⟨ML, w⟩ to the oracle tape and enter the state qoracle.
3. If the oracle tape contains a 0, then we know M does not halt on w. Reject the input w.
4. If the oracle tape contains a 1, then we know M halts on w. So, run ML on w.
5. If ML accepted w, accept.
6. If ML rejected w, reject.

2.2 (b)

We show that the number of L-oracle TM’s is countably infinite by creating a bijection from a set
we know to be countably infinite to the set of all L-oracle TM’s. We can encode each 8-tuple of an
L-oracle TM as a string over the alphabet Σ. Then we create a bijection by mapping each element of
the ordered set Σ∗ = {ϵ, 0, 1, 00, 10, . . .} to each element of the ordered set of encoded L-oracle TM’s.
Thus, the number of L-oracle TM’s is countably infinite.

Σ∗ encoded L-oracle TM’s
ϵ ⟨ML

1 ⟩
0 ⟨ML

2 ⟩
1 ⟨ML

3 ⟩
00 ⟨ML

4 ⟩
01 ⟨ML

5 ⟩
...

...

Since Σ∗ is countably infinite, and we have a bijection from Σ∗ to the set of all L-oracle TM’s, then
the set of all L-oracle TM’s is countably infinite, too. Another way to think about it is that the set of
encoded L-oracle TM’s can be no larger than Σ∗ since every encoded L-oracle TM is in Σ∗, and not
every element of Σ∗ can be an encoded into a valid L-oracle TM. In both methods we are mapping (in
a one-to-one and onto way) from a subset of Σ∗ to all of Σ∗.

III

Maksim
Rectangle

Maksim
Rectangle

Maksim Rozentsveyg 003692329

2.3 (c)

I adapted the solution to this problem from my solution to Problem 1 from Homework 4. We create
a specific language Lu which is not recognizable by a HALTTM -oracle TM by Cantor’s Diagonalization.
Given all the languages of L-oracle TM’s, we can create a language not in this set by defining Lu such
that for each step in the language, Lu performs the opposite step of a language in our set. We denote
the set of all languages of L-oracle TM’s as LL = {LL

1 , L
L
2 , L

L
3 , . . .}:

HHHHHHLL
Σ∗

ϵ 0 1 00 01 10 11 . . .

LL
1 0 1 L 1 0 0 L . . .

LL
2 1 1 0 L 0 1 0 . . .

LL
3 L 0 0 0 L 1 1 . . .

LL
4 0 L 1 L 0 1 0 . . .

LL
5 0 L 0 1 L 0 L . . .

LL
6 L 0 1 L 0 1 1 . . .

LL
7 1 L 0 1 1 0 L . . .

. .

Lu = 01 0LL 1L . . .

= 10 1 1 1 0 1 . . .

Now, Lu ̸= LL
i ∀LL

i ∈ LL, so Lu /∈ LL. This means Lu is recognized by no L-oracle TM.

2.4 (d)

We let G = Lu. Then a G-oracle TM will trivially decide Lu.

IV

Maksim
Rectangle

Maksim
Rectangle

Maksim Rozentsveyg 003692329

3 Turing Cards.

We can consider the rules that Bob declares as a special CFG G = (V,Σ, R′, S):

• First we set Σ = Λ and let S = S.

• We note that in Bob’s rules, the terminals and nonterminals are the same set. To reconcile this,
we first set V = {S}∪Λ′, where Λ′ = {1′, 2′, 3′, . . . , ℓ′}. In other words Λ′ is a copy of Λ but with
each character x ∈ Λ replaced with a corresponding x′. Now Σ ∩ V = ∅.

• Then we change Bob’s rules R to create a distinction between terminals and nonterminals. Let
R′ at first be an empty set of rules. For every rule r ∈ R, we replace all characters x ∈ Λ in the
rule with their corresponding counterparts in x′ ∈ Λ′. This creates a new rule r′. We add this
new rule to R′. However, we still do not have a way to terminate. So, we create a set of rules
{x′ ⇒ x|x′ ∈ Λ′, x ∈ Λ} = {1′ ⇒ 1, 2′ ⇒ 2, . . . , ℓ′ → ℓ}. This lets us transition from nonterminals
to terminals. We add this set to R′, too. Finally we add the rule S ⇒ 1′ to R′. Now, our set
of rules R′ lets us emulate Bob’s rules in a manner consistent with CFG’s; we start with the
variable 1′ (which is equivalent to starting with a 1 in Bob’s rules), then transition to various
other variables according to Bob’s rules where each character x was replaced with x′, and can
then transition from x′ back to x at any time to get non-terminals.

Now ALICE is simply a question of whether or not G produces a string that contains a 2. This is
equivalent to seeing if this grammar is decided by a PDA whose language contains a string that contains
a 2. So to prove ALICE is undecidable, we perform a reduction from ATM to a machine PDA-2 =
{⟨P ⟩|P is a PDA where L(P) contains a string with a 2 in it}.

We perform the reduction as follows. Suppose we have a decider MA (input is ⟨M,x⟩) for ATM and
a decider MP for PDA-2. We create a PDA P that that takes as input a modified configuration of a
run of M on x. A typical configuration will be C1C2C3C4 . . . Cn. However P will expect an input of
the form C1C

R
2 C3C

R
4 . . . Cn#C1C

R
2 C3C

R
4 . . . Cn#.

P will verify that the configuration of M on x is indeed a valid configuration. We structure P
using the proof from HW 6 #6 as a guideline. First we note that each configuration Ci is written as
in the hint for that problem; that is, “write the configuration (3, q0, 11100 ⊔ 0) as 11q0100 ⊔ 0, and the
configuration (4, q5,⊔ ⊔ ⊔⊔) as ⊔ ⊔ ⊔q5⊔” for example. We need to check 3 things to ensure a valid
configuration: that C1 is a valid start state, that Ci ⊢ Ci+1, and that Cn is a valid accepting state.

• To ensure that Ci is a valid configuration, we simply check that Ci = q0 ⊔ ⊔ . . .⊔. The PDA can
have states that do simple string comparison to verify this.

• To ensure that each Ci ⊢ Ci+1, we reverse every other configuration. This is because a PDA can
push the string Ci onto the stack, and check that it is equal to the reverse of Ci+1 character-by-
character as it pops elements off of the stack. Up to 3 symbols next to the head may be different
because valid configuration sequences can have a difference of up to 3 symbols from configuration
to configuration (depending on the value of i). However, if we only pass the PDA the configuration
C1C

R
2 C3C

R
4 . . . Cn, then after verifying C1 ⊢ C2, the input C2 is gone and we can not verify that

C2 ⊢ C3. The solution is to pass a second copy of the configuration as input. That way, we
can check the Ci ⊢ Ci+1 for even i’s on the first instance of the configuration sequence, and that
Ci ⊢ Ci+1 for odd i’s on the second instance of the configuration sequence.

• To ensure that Cn is a configuration valid for our purposes, we must check that Cn is an accepting
configuration. This is done by ensuring that only one state, qhalt, appears in Cn.

If the configurations are valid, then this means M accepted x. However our PDA must check that
we accepted a string with 2 in it. We can do this check simultaneously with ensuring that C1 is valid,

V

Maksim
Rectangle

Maksim
Rectangle

Maksim
Typewriter
In retrospect, this solution is almost completely wrong

because Turing cards are a context-sensitive grammar.

Maksim
Typewriter

Maksim Rozentsveyg 003692329

Ci ⊢ Ci+1, and that Cn is valid; we simply check to see if at least one Ci ∀i ∈ {2, 3, . . . , n} has a 2 or
2′ on the tape. If there is, then Alice has found a 2 with Bob’s rules.

Finally, we pass P to MP . So if M accepted x, then MP will receive a PDA that has a string
with a 2 in its language. Otherwise it will not. In this way we have created the decider MA for ATM .
However, since ATM is undecidable, PDA-2 is undecidable, and since PDA-2 is equivalent to ALICE,
then ALICE is undecidable, too.

VI

Maksim
Rectangle

Maksim Rozentsveyg 003692329

4 Recursion Theorem.

The method behind using the recursion theorem to prove unrecognizability is to first declare a
machine M , assume that we have the description of the machine ⟨M⟩ within M , and then call the
recognizer on ⟨M⟩ inside of M . Based on the results of the recognizer, we will then perform an action
that is contradictory to what the results of the recognizer imply the machine should do. In this way,
we create a machine that contradicts (and invalidates) the recognizer.

4.1 (a)

Let R be the recognizer for ETM . We create a machine M that R will fail on as follows:

M = “On input string w:
1. Let N = ⟨M⟩, the description of M .
2. Run R on N .
3. If R accepted, then accept w.

If R accepted ⟨M⟩, then that means the language of M is the empty set. This means M doesn’t
accept any strings. But above we constructed M to indeed accept a string w (but only when the
recognizer claims M doesn’t accept any strings). This is a contradiction. So, R fails to produce the
right answer on the machine M , and thus R cannot exist, which means ETM is not recognizable.

4.2 (b)

Let S be the recognizer for ALLTM . We create a machine M that S will fail on as follows:

M = “On input string w:
1. Let N = ⟨M⟩, the description of M .
2. Run S on N .
3. If S accepted, then reject w.

If S accepted ⟨M⟩, then that means the language of M = Σ∗. This means M accepts all strings. But
above we constructed M to indeed reject a string w (but only when the recognizer claims M accepts
every string). This is a contradiction. So, S fails to produce the right answer on the machine M , and
thus S cannot exist, which means ALLTM is not recognizable.

VII

Maksim
Rectangle

Maksim
Rectangle

Maksim Rozentsveyg 003692329

5 m-Love (Extra Credit Problem).

To prove 511-Love is regular, we can create a regular expression for it. This means that given a
language L, we can apply a regular expression to it to isolate the strings that are in 511-Love with each
other. If ϵ is in 511-Love of a given language, then the regular expression is probably of the form (R)∗

where R is another unknown, regular expression. In this way we can detect ϵ. The regular expression
must also detect multiples of 511 1’s and 511 0’s in arbitrary positions. So it will contain the terms(∪

511

0∗10∗
)∗

and

(∪
511

1∗01∗
)∗

. This coupled with the above assumption is enough to detect 511-Love.

The regular expression for 511-Love is

((∪
511

0∗10∗
)∗

∪
(∪

511

1∗01∗
)∗)∗

.

VIII

Maksim
Rectangle

Maksim
Rectangle

