
Name:

Student ID:

CS181 Winter 2010 - Final
Due Friday, March 12, 2010

You are limited to 10 hours (not necessarily contiguous) to take this exam. It must be turned in during
discussion by 4:00 P.M. on Friday, March 12, 2010. This exam is open-book and open-notes, but any
materials not used in this course are prohibited. The exam is to be taken individually without any outside
help, except possibly from the professor or the TA, within the time limits set forth. There are a total of 5
questions and the exam is worth 175 points. Place your name and UID on every page of your solutions.
Staple this cover sheet to your solutions. Please use separate pages for each question.

Please handwrite the following honor code agreement and sign and date in the spaces provided.
Honor Code Agreement: I promise and pledge my honor that, for the purpose of this exam, I am not
to collaborate with any person except for the professor or the TA, nor will I refer to any material except
for the class textbook and my own class notes. I will abide by the CS181 Honor Code.

Signature:

Date:

Question 1 2 3 4 5 Total

Points



1. For each of the following questions, give a rigorous proof for your answer.

(a) (15 pts.) Let w be an arbitrary fixed string. Let
Lw = {〈M〉 | M is a Turing Machine that accepts w}. Prove that for every string w, Lw is
Turing-Recognizable but not decidable.

(b) (10 pts.) Let A and B be arbitrary Turing-Recognizable languages such that A ∪B is also
Turing-Recognizable. Prove that A and B must both be decidable.

(c) (15 pts.) Define an n-PDA to be exactly like an ordinary PDA except that it is only allowed to
have at most n symbols on the stack. Let REG be the class of regular languages, CF be the class
of context free languages, and THOUSAND be the class of languages recognized by 1000-PDAs.
Exactly one of the following three statements is true. Decide which one is true and give a
rigorous proof for why it is true (you need not prove why the other two statements are false):

i. CF = THOUSAND

ii. REG ⊂ THOUSAND ⊂ CF

iii. REG = THOUSAND

Note that A ⊂ B means that A ⊆ B but A 6= B.



2. This problem is inspired by the Büchi automaton question from the midterm. Define a MalBüchi
Turing Machine M to be one that also has non-halting accept states, and we say that M accepts a
string if it halts and accepts OR if it never halts but visits an accepting state infinitely often. It
rejects if it halts and rejects OR if it never halts and only visits accepting states finitely many times.
Unlike Büchi automata though, the inputs are still ordinary finite length strings. The set of
strings that a MalBüchi Turing Machine M accepts is the language recognized by M . Call a language
Mal-Recognizable if there is some MalBüchi Turing machine that recognizes it.

(a) (15 pts.) Recall that we showed that ATM is not Turing Recognizable. In contrast, prove that
ATM for ordinary Turing Machines is Mal-Recognizable.
(For the purpose of this problem,
ATM = {〈M,w〉 | M is a Turing Machine and M does not accept w}.)

(b) (15 pts.) Use your knowledge of different kinds of infinities to show that there must exist a
language that is not recognized by any MalBüchi Turing Machine.

(c) (15 pts.) Use diagonalization to construct an explicit language L that is not recognized by any
MalBüchi Turing Machine.
(Note that by an explicit language L, we mean a language that you can define. An example of
this is the language of Self-Hating Turing Machines:
SHT = {〈M〉 | M is a Turing Machine and M(〈M〉) does not accept}.)



3. We consider a new machine called a Numerical Automaton. A Numerical Automaton N is similar to
an NFA except that ε-transitions are not allowed and, in addition, it has a counter at its disposal. The
counter begins at 1, and the Numerical Automaton can either add 1 to the counter, subtract 1 from
the counter, or double the counter (i.e. multiply by 2). It must perform exactly one of these three
actions with each transition taken, and the Numerical Automaton is not allowed to look at the current
value of the counter. Moreover, the accepting conditions for Numerical Automata (see below) are
entirely determined by the counter, and hence we make no distinction between accepting versus
non-accepting states.

Formally, a Numerical Automaton N is a 4-tuple (Q,Σ, δ, q0), where Q is a finite set of states, Σ is the
input alphabet, q0 is the initial state, and δ : Q×Σ→ P(Q)× {+1,−1,×2} is the transition function.
For example, if N is at state p, moves to state q while consuming symbol a, and doubles the counter,
this can be represented as δ(p, a) = ({q},×2). The accepting conditions for Numerical Automata are
as follows. The moment the counter reaches 0, the machine accepts if and only if there is no more
input to be consumed. If the entire input has been consumed before the counter ever reaches 0, the
machine automatically rejects. The set of strings accepted by N is the language of N . We say that a
Numerical Automaton N recognizes language L if L = L(N). We call a language Numerical if it is
recognized by some Numerical automaton.

(a) (5 pts.) Prove that there exists a context-free language L which is not Numerical.
(Hint: A singleton language should suffice.)

(b) (15 pts.) Prove that there exists a Numerical language L which is not context-free.



4. Call a CFG a Straightline Grammar if every rule fits one of the following three forms: C → wD,
C → Dw, or C → ε, where w ∈ Σ∗ and C,D ∈ V . We say a context-free language L is Straightline if
there is some Straightline Grammar G such that L = L(G).

Now, consider a restricted form of PDAs. We say that a PDA P is Hilly if, once P pops something off
the stack, it is never allowed to push something onto the stack again. Every transition either pushes a
symbol, pops a symbol, or consumes an input symbol without modifying the stack. Hence, the stack
diagram can look as follows:

time

st
ac
k 
he
ig
ht

A Hilly language is one which has a Hilly PDA that accepts it.

(a) (20 pts.) Prove that every Straightline language is Hilly.
(Hint: Try using a state for each variable. You might also need some extra states.)

(b) (5 pts.) Suppose we have a grammar in which every rule fits one of the following two forms:
C → w1Dw2 or C → ε, where w1, w2 ∈ Σ∗ and C,D ∈ V . Prove that there exists a Straightline
Grammar that is equivalent. That is, given a grammar G in which every rule fits one of the two
forms, construct a Straightline Grammar G′ such that L(G) = L(G′).

(c) (15 pts.) Prove that every Hilly language is Straightline.
(Hint: Do not forget to consider transitions which leave the stack unmodified.)



5. We explore another use of the Recursion Theorem for this problem. We say that a language L is rich
if there is a Turing Machine D, which we will call the Detective, that computes a function and always
halts such that for any Turing Machine M which has L(M) ⊆ L, it must be the case that D(〈M〉) is
in L but not in L(M).

(a) (10 pts.) Prove that a rich language is not recursively enumerable.
(Note: You do not need the Recursion Theorem for this part.)

For this next part, if you really want to challenge yourself, do not look at the last page as it
contains a really big hint.

(b) (20 pts.) In this part, we use the Recursion Theorem as a way to obtain a string in a language.
Suppose we have some language L which satisfies the property that L is rich. Since L is rich,
there is a Turing Machine D (the Detective) where for any Turing Machine M we have
L(M) ⊆ L⇒ D(〈M〉) is in L but not in L(M). If the only thing you are given is the Detective
D, show how to get a string in the language L.

Note that it is easy to get a string in L, since we can construct a Turing Machine E such that
L(E) = ∅. Hence, we have L(E) = ∅ ⊆ L⇒ D(〈E〉) is in L but not in the empty set, which
implies that D(〈E〉) is in L.

The challenge for you in this problem is to show how to obtain a string in L if the only thing you
are given is D.



As a (very big) hint to Problem 5, Part b), consider the following Turing Machine T which uses the
Recursion Theorem to obtain its own description and the Detective D for L:

Construct T = “On input x:
Obtain, via the Recursion Theorem, own description 〈T 〉
If x = D(〈T 〉):

accept
Otherwise:

reject”


