
U C L A
Computer Science Department

CS 180 Algorithms & Complexity ID: _ _ _ -_ _- _ _ _ _
Each question has 20 points Total Time: 1.5 hours Tuesday, November 8th

Problem 1
a. Describe Prim’s MST algorithm (in English).

Prim’s algorithm is described as follows:

1. Create a tree containing a single vertex, chosen arbitrarily from the graph.
2. Create a set containing all of the edges in the graph
3. Repeat the following two steps until every edge in the set connects two

vertices in the tree
a. Remove from the set an ege with minimum weight that connects a

vertex in the tree to a vertex not in the tree
b. Add that edge to the tree

b. Analyze its time complexity (using a heap).

The time complexity of Prim’s algorithm is O(mlogn), where m = |E| and n = |V|.

A proof of this statement can be found in the textbook.

Problem 2. Show each step of delete-max and heapify as you delete 3 numbers (one-
by-one) from the following heap.

Delete-max:

11

10 3

9 8 2 1

7 6 5 4

4

10 3

9 8 2 1

7 6 5

Heapify:

Delete-max:

5

9 3

7 8 2 1

4 6

10

9 3

7 8 2 1

4 6 5

Heapify

Delete-max

6

8 3

7 5 2 1

4

9

8 3

7 5 2 1

4 6

Heapify

8

7 3

6 5 2 1

4

Problem 3. Consider a sorted sequence a1, …, an of distinct integers.
a. Design an efficient algorithm that decides whether there exists an integer ai such that

ai = i (for example, if the sequence is -1, 3, 4, 5, 7, 9 then the answer is NO).

 Let A[1..n] be an array containing the integers.

If A[n/2] = n/2
 Then return True

Else if A[n/2] > n/2
 Then recursively examine the subsequence A[1..(n/2)-1]

Else // A[n/2] < n/2
 Then recursively examine the subsequence A[(n/2)+1..n]

Return False

b. At most, how many such numbers could there be?

There can be at most n such integers, A[i] = i for i = 1, 2, …, n

c. Analyze the time complexity of your algorithm.

The time complexity is O(logn), analogous to binary search.

Problem 4.
a. Let G be a directed graph with n vertices. Design an efficient algorithm to label all

vertices with distinct integers 1 to n such that the label of each vertex is at least one
greater than the label of at least one of its predecessors, or to determine that no such
labeling is possible.

A source is a vertex whose in-degree is 0
Q : a queue of vertices

 For each vertex v in G
 If v is a source
 Enqueue v in Q
 While Q is not empty
 Remove s, the source at the front of the queue
 Initiate a DFS from s

(During the DFS, remove each vertex from G as it is popped from
the stack; assign labels to the vertices in the order in which they
are discovered)

 If any vertices remain in G
 Return the assignment of labels to each vertex
 Else
 Return False (i.e. no such labeling is possible)

b. Analyze the time complexity of your algorithm.

The time complexity of this algorithm is O(n + m), where n = |V| and m = |E|. The
first for-loop takes O(n) time. During the while loop, each vertex in the graph is
processed at most once by any DFS; no vertex can be processed more than once by a
DFS, since it is removed from G as soon as it is popped from the stack. The cost of a
DFS is O(n + m). Therefore, the total time complexity of this algorithm is O(n + m).

Problem 5. Consider n positive integers d1, d2 … dn such that d1 + d2 + …+ dn = 2n-2.
a. Design an efficient algorithm for constructing a tree with n vertices of degrees exactly

d1, d2 … dn.

1. For i ← 1 to n
a. Mark[i] ← FALSE

2. Sort the list of numbers in O(nlogn) time using Heapsort or Mergesort.
(After sorting, assume that dn > dn-1 > … > d1

3. Create a vertex vn, corresponding to dn
(We will let vn be the root of the tree. vn will have exactly dn children)

4. Let k = dn. Let children[vn] = {vn-1, vn-2, …, vn-k}. These children will
correspond to values in the dn-1, dn-2, …, dn-k sorted list.

5. Attach an edge between vn and each of its children.
6. Set dn = 0 and remove dn from the list
7. Mark[n] ← TRUE
8. For i ← 1 to k

a. dn-i ← dn-i – 1
b. MARK[n-i] ← TRUE

9. Re-sort the remaining degree sequence.
10. For i ← 1 to k

a. If dn-i = 0
i. Remove dn-i from

b. Else
i. Recursively repeat Steps 3-9 for each child vn-i of vn with the

following change: the selected children of vn-i MUST be satisfy
Mark[n-i] = FALSE at each step. (Mark[n-i] = TRUE indicates
that the vertex already has a parent. Ensuring that each child
vertex has exactly one parent prevents cycles)

b. Prove the correctness of your algorithm.

Before the formal proof, we acknowledge a few facts that are well-known from
graph theory:

1. A tree with n vertices has EXACTLY m = n – 1 edges
2. A tree cannot contain cycles
3. mv

Vv
2]deg[=∑

∈

 (= 2n – 2 for trees)

The algorithm describe above is greedy. To prove correctness we must establish
that the problem exhibits optimal substructure and that the greedy choice property
is satisfied.

1. Optimal Substructure

To see that the problem exhibits the greedy choice property, observe that each
vertex in the tree is the root of its own sub-tree. The array Mark (coupled with
the Else statement in step 10) ensures that each vertex is added to the tree
exactly once, and that each vertex (other than the root of the tree) has exactly
one parent when it is added to the tree.

2. Greedy Choice Property

The first vertex, vn (the root of the tree) has exactly dn children. Each other
vertex vn-i has exactly 1 parent and (dn-i – 1) children. Correctness follows
from the fact that the degree of each child vertex is decremented as it is added
to the tree. Property 3 above ensures that the degrees of all of the vertices in
the tree add up to twice the number of edges.

