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Problem 1  
a. Describe Prim’s MST algorithm (in English). 
  

Prim’s algorithm is described as follows: 
 
1. Create a tree containing a single vertex, chosen arbitrarily from the graph. 
2. Create a set containing all of the edges in the graph 
3. Repeat the following two steps until every edge in the set connects two 

vertices in the tree 
a. Remove from the set an ege with minimum weight that connects a 

vertex in the tree to a vertex not in the tree 
b. Add that edge to the tree 

 
 
b. Analyze its time complexity (using a heap). 

 
The time complexity of Prim’s algorithm is O(mlogn), where m = |E| and n = |V|.  
 
A proof of this statement can be found in the textbook. 
 
 
 
 



 
Problem 2. Show each step of delete-max and heapify as you delete 3 numbers (one-
by-one) from the following heap. 
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Heapify: 
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Problem 3. Consider a sorted sequence a1, …, an of distinct integers.  
a.  Design an efficient algorithm that decides whether there exists an integer ai such that 

ai = i  (for example, if the sequence is -1, 3, 4, 5, 7, 9 then the answer is NO). 
 
 Let A[1..n] be an array containing the integers.  
 

If A[n/2] = n/2  
  Then return True 

Else if A[n/2] > n/2 
  Then recursively examine the subsequence A[1..(n/2)-1] 

Else // A[n/2] < n/2 
  Then recursively examine the subsequence A[(n/2)+1..n] 

Return False 
 
b. At most, how many such numbers could there be?  
 

There can be at most n such integers, A[i] = i for i = 1, 2, …, n 
 
c. Analyze the time complexity of your algorithm. 
 

The time complexity is O(logn), analogous to binary search.  
 



Problem 4.   
a.  Let G be a directed graph with n vertices. Design an efficient algorithm to label all 

vertices with distinct integers 1 to n such that the label of each vertex is at least one 
greater than the label of at least one of its predecessors, or to determine that no such 
labeling is possible. 

 
A source is a vertex whose in-degree is 0 
Q : a queue of vertices 
 
 For each vertex v in G 
  If v is a source 
   Enqueue v in Q 
 While Q is not empty 
  Remove s, the source at the front of the queue 
   Initiate a DFS from s 

(During the DFS, remove each vertex from G as it is popped from 
the stack; assign labels to the vertices in the order in which they 
are discovered) 

 If any vertices remain in G 
  Return the assignment of labels to each vertex 
 Else 
  Return False (i.e. no such labeling is possible) 

 
 
b.  Analyze the time complexity of your algorithm. 

 
The time complexity of this algorithm is O(n + m), where n = |V| and m = |E|. The 
first for-loop takes O(n) time. During the while loop, each vertex in the graph is 
processed at most once by any DFS; no vertex can be processed more than once by a 
DFS, since it is removed from G as soon as it is popped from the stack. The cost of a 
DFS is O(n + m). Therefore, the total time complexity of this algorithm is O(n + m).  

 
 



 
Problem 5.  Consider n positive integers d1, d2 … dn such that d1 + d2 + …+ dn = 2n-2. 
a.  Design an efficient algorithm for constructing a tree with n vertices of degrees exactly 

d1, d2 … dn.  
 

1. For i ← 1 to n 
a. Mark[i] ← FALSE 

2. Sort the list of numbers in O(nlogn) time using Heapsort or Mergesort.  
(After sorting, assume that dn > dn-1 > … > d1 

3. Create a vertex vn, corresponding to dn 
(We will let vn be the root of the tree. vn will have exactly dn children) 

4. Let k = dn. Let children[vn] = {vn-1, vn-2, …, vn-k}. These children will 
correspond to values in the dn-1, dn-2, …, dn-k sorted list. 

5. Attach an edge between vn and each of its children.  
6. Set dn = 0 and remove dn from the list 
7. Mark[n] ← TRUE 
8. For i ← 1 to k 

a. dn-i ← dn-i – 1 
b. MARK[n-i] ← TRUE 

9. Re-sort the remaining degree sequence. 
10. For i ← 1 to k 

a. If dn-i = 0 
i. Remove dn-i from 

b. Else 
i. Recursively repeat Steps 3-9 for each child vn-i of vn with the 

following change: the selected children of vn-i MUST be satisfy 
Mark[n-i] = FALSE at each step. (Mark[n-i] = TRUE indicates 
that the vertex already has a parent. Ensuring that each child 
vertex has exactly one parent prevents cycles)  

 
b.  Prove the correctness of your algorithm. 
 

Before the formal proof, we acknowledge a few facts that are well-known from 
graph theory: 
 
1. A tree with n vertices has EXACTLY m = n – 1 edges 
2. A tree cannot contain cycles 
3. mv

Vv
2]deg[ =∑

∈

 ( = 2n – 2 for trees) 

 
The algorithm describe above is greedy. To prove correctness we must establish 
that the problem exhibits optimal substructure and that the greedy choice property 
is satisfied.   
 
1. Optimal Substructure 
 



To see that the problem exhibits the greedy choice property, observe that each 
vertex in the tree is the root of its own sub-tree. The array Mark (coupled with 
the Else statement in step 10) ensures that each vertex is added to the tree 
exactly once, and that each vertex (other than the root of the tree) has exactly 
one parent when it is added to the tree. 
 

2. Greedy Choice Property 
 

The first vertex, vn (the root of the tree) has exactly dn children. Each other 
vertex vn-i has exactly 1 parent and (dn-i – 1) children. Correctness follows 
from the fact that the degree of each child vertex is decremented as it is added 
to the tree. Property 3 above ensures that the degrees of all of the vertices in 
the tree add up to twice the number of edges.  

 
 


