
Mid-term. May 4, 2015

CS180: Algorithms and Complexity
Spring 2015

Guidelines:

• The exam is closed book and closed notes. Do not open the exam until instructed to do so.
You will have to stop writing at 5:50 PM.

• Write your solutions clearly and when asked to do so, provide complete proofs. You may use
results we proved in class without proofs as long as you state what you are using. You may
also use any algorithms we covered in class as sub-routines without giving full descriptions
(or rewriting the whole algorithm again).

• Most importantly, make sure you adhere to the policies for academic honesty set out on the
course webpage. The policies will be enforced strictly.

Problem Points Maximum

1 5

2 10

3 15

4 25

5 25

6 10

7 30

Total 120

Name:
UID:

Section:

1

http://cs180.raghumeka.org

1 Problem

For each pair (f, g) below indicate the relation between them in terms of O,Ω,Θ. For each missing
entry, write-down Y (for YES) or N (for NO) to indicate whether the relation holds (no need to
justify your answers here). For example, if f = O(g) but not Ω(g), then you should enter Y in the
first box and N in the other two boxes. Similarly, if f = Θ(g), then you should enter Y in all the
boxes. [5 points].

f g O Ω Θ

log2 n log10 n Y Y Y

2(log2 n)
4

n5 N Y N

n3 · 2n 3n Y N N

2
√

log2 log2 n log2 n Y N N

n! nn Y N N

2 Problem

Answer true or false for the following (no need for explanations) [10 points]:

• Consider an instance of the stable matching where a doctor D1’s first choice is H1 and H1’s
first choice is D1. Is it true that in every stable matching D1 should be matched to H1?

TRUE. If not, both D1, H1 would be better off by dropping their partners and pairing with
each other.

• Consider an instance of the stable matching problem and a candidate perfect matching M
where one doctor gets her top choice and one hospital gets its top choice, while every other
doctor and hospital get their second choice. Is M necessarily a stable matching?

FALSE. Take the following example for instance D1 : H1 > H2, D2 : H1 > H2, H1 : D1 > D2,
H2 : D1 > D2. Then, the matching D1 ↔ H2 and D2 ↔ H1 satisfies the condition but is not
stable.

• If α is an n’th root of unity, then
∑2n−1

j=0 αj = 2n.

FALSE. It is true only if α = 1.

• Dijkstra’s algorithm when run on an unweighted undirected graph starting from a vertex s
gives us (by looking at the graph formed by Parent links) the breadth-first-search tree starting
from s.

TRUE. We stated this in class.

• Any polynomial P : R→ R of degree d is uniquely determined by its evaluations at d distinct
points x1, . . . , xd.

FALSE. You need at least d+ 1 evaluations for a degree d polynomial.

2

3 Problem

Given a connected undirected graph G = (V,E) as input (in adjacency list representation), give
an algorithm to check if G is a tree. You must analyze the time-complexity of your algorithm but
don’t need to prove correctness. For full credit, your algorithm should be correct and run in time
O(|V |+ |E|). [15 points]

Solution: The best way to do this is to use breadth first search but check if you visit a vertex
twice. However, you need to be careful to keep track of parent vertices. Let s be an arbitrary start
vertex.

1. Initialize Discovered[v] = 0 and Parent[v] = ∅ for all v 6= s.

2. Set j = 0, let L0 = {s} and set Discovered[s] = 1, Parent[s] = s.

3. While Lj 6= ∅:

(a) Set Lj+1 = ∅.
(b) For every vertex u ∈ Lj :

(c) For every edge {u, v} from u:
If Discovered[v] = 1 and Parent[u] 6= v, Return Not-a-Tree.
Elseif Discovered[v] = 0, set Discovered[v] = 1, Parent[v] = u and add v to Lj+1.

(d) Increment j.

4. Check if Discoverd[v] = 1 for all vertices v ∈ V . If yes, Return Tree, else Return
Not-a-Tree.

The correctness of the algorithm follows from what we did in class. For time complexity note
that each edge of the algorithm is only examined once and we spend O(|V |) time in the initialization
process (and the final check). Therefore, the total time is O(|V |+ |E|).

Remark: Many of you gave the following algorithm: Run BFS (or DFS) to get a tree T - check if
G equals T if yes, output Tree, else output not a tree. However, this is incomplete as it does not
specify how to check if G equals T in time O(|V |+ |E|). This solution got you 10 points typically.

4 Problem

Given the coefficients of a polynomial P of degree d and an integer k as input, give an algorithm
to compute the coefficients of the polynomial P (x)k. For example, if your input is (1, 1) (to denote
the polynomial 1 + x) and k = 3, your output should be (1, 3, 3, 1) to denote the polynomial
(1 + x)3 = 1 + 3x+ 3x2 + x3. Similarly, if the input is (1,−3) (to denote P = 1− 3x), k = 3, your
output should be (1,−9, 27,−27).

To get full credit, your algorithm should be correct, run in time O((k · d) log(k · d)) and you
must analyze the time-complexity of your algorithm (no need to prove correctness). [25 points]

3

Remark: Here we measure time-complexity as in the fast-polynomial multiplication algorithm,
where we count complex additions and multiplications as unit-cost.

Solution: This is very similar to problem two from assignment two. The one difference is that
instead of using Karatsuba’s algorithm we will use the fast-polynomial-multiplication algorithm we
did in class. Let Fmult(P,Q) be the algorithm we discussed in class for multiplying two polynomials
P,Q of degree at most n that takes time O(n log n).

PowerP(k): (Input - polynomial P , positive integer k; Output - P k).

1. If k = 0, Return 1.

2. If k is even:
Compute Q = PowerP(k/2).
Return Fmult(Q,Q).

3. If k is odd:
Compute Q = PowerP((k − 1)/2).
Return Fmult(P,Fmult(Q,Q)).

Analysis. It is easy to show the correctness by strong induction. The base-case, k = 0, is clearly
correct as it is hardcoded into the algorithm. If it is true for all integers j < k, then the value of
Q as defined in the algorithm would be what it should be and hence P (x)k would be computed
exactly.

To compute the time-complexity, note that the polynomial Q computed in the algorithm has
degree at most kd. Therefore, if we denote the time-complexity for input k as T (k), then we have
the recurrence

T (k) ≤ T (bk/2c) + (cost of Fmult(Q,Q)) + (cost of Fmult(P,Q2))

= T (bk/2c) +O((kd) log(kd)) ≤ T (bk/4c) +O((kd/2) log(kd)) +O(kd log(kd)) ≤ . . .
≤ O(1)(log kd) (kd+ (kd/2) + (kd/4) + (kd/8) + · · ·) = O((kd) log(kd)).

Remark: A reasonably direct solution for the problem is to have a simple for loop and repeatedly
multiply P k times using Fmult. This takes time

∑k
i=1O(id log(id)) ≈ O(k2d log(kd)). This

solution was typically given 12 points if the time-complexity analysis was wrong and 15 if the
time-complexity was analyzed correctly.

An unfortunate mistake that many people made was to make two recursive calls to the powering
function for k/2. This leads to the recurrence, T (k) ≤ 2T (bk/2c) + O(kd(log kd)). The solution
to this recurrence is not T (k) = O((kd)(log kd)), but T (k) = O(kd(log d)(log k)) - you lose another
logarithmic factor. This solution was typically given 19 points if the time-complexity analysis was
wrong and 21 if the time-complexity was analyzed correctly.

5 Problem

Let G = (V,E) be a directed graph with nodes v1, . . . , vn. We say that G is an ordered graph if it
has the following properties.

1. Each edge goes from a node with a lower index to a node with a higher index. That is, every
directed edge has the form (vi, vj) with i < j.

4

2. Each node except vn has at least one edge leaving it. That is, for every node vi, i = 1, 2, . . . , n−
1, there is at least one edge of the form (vi, vj).

Given an ordered graph G = (V,E) (in adjacency list representation), give an algorithm to compute
the number of paths that begin at v1 and end at vn.

You must analyze the time-complexity of your algorithm (no need to prove correctness). To get
full-credit your algorithm must be correct and run in time O(|V |+ |E|). [25 points]

Remark: You can assume that adding two numbers takes constant time in your time-complexity
calculations.

Solution: The algorithm is quite similar (but simpler) than the problems from problem set 3. Let
Path[i] denote the number of paths from vi to vn.

1. Set Path[n− 1] = 1. This is correct by property (2) of the graph.

2. Initialize Path[i] = 0 for i 6= n− 1.

3. For i = n− 2 to 1:
For each edge (vi, vj) ∈ E, set Path[i] = Path[i] + Path[j].

4. Return Path[1].

To analyze the time-complexity, note that the initialization takes O(n) time. After, that each
edge of the graph results in us performing one addition. Therefore, the total time-complexity is
O(|V |+ |E|).

To prove correctness, note that the Path variables satisfy the recurrence

Path[i] =
∑

j:(vi,vj)∈E

Path[j].

This is because to get to vn from vi we can take any of the edges, say (vi, vj) ∈ E, out of vi and
then take any path leading from vj to vn. The desired output is Path[1].

The correctness now follows from downward induction on i. It is correctly computed for
i = n, n − 1. Now, suppose Path[j] is computed correctly for j > i. Then, Path[i] will be
computed correctly as we are using the right recurrence. The correctness now follows by induction.

Remark: Several people gave a recursive solution without memorization - which is highly expensive
(as bad as brute-force). This solution was typically given 16 points of 25 (if the recurrence relation
was identified correctly).

6 Problem

Decide whether the following statement is true or false. If it is true, give a short explanation (no
need for a formal proof - a high-level description is enough). If it is false, give a counter-example.

Suppose we are given an instance of the Minimum Spanning Tree Problem on a graph G, with
edge costs that are all positive and distinct. Let T be a minimum spanning tree for this instance.
Now suppose we replace each edge cost ce by its square, c2e, thereby creating a new instance of the
problem with the same graph but different costs.

5

True or false? T must still be a minimum spanning tree for this new instance. [10 points]

Solution: The statement is TRUE. The proof follows from any of the three algorithms for com-
puting a minimum spanning tree that we discussed in class. In all three algorithms the order in
which the edges are considered only depends on the relative ordering of the weights and not on the
actual weights themselves. Squaring all the weights does not change the relative ordering of the
edges and hence all the algorithms will proceed in the same way as with the original weights.

7 Problem

Given an undirected graph G = (V,E), a subset of vertices I ⊆ V is an independent set in G if
no two vertices in I are adjacent to each other. Let α(G) = max{|I| : I an independent set in G}.
The goal of the following questions is to give an efficient algorithm for computing an independent
set of maximum size in a tree. Recall that a leaf in a graph is a vertex of degree at most 1 and
that every acyclic graph (graph without any cycles) has at least one leaf.

Let T = (V,E) be an acyclic graph on n vertices.

1. Prove that if u is a leaf in T , then there is a maximum-size independent set in T which
contains u. That is, for every leaf u, there is an independent set I such that u ∈ I and
|I| = α(T). [15 points]

2. Give the graph T as input (in adjacency edge representation), give an algorithm to compute
an independent-set of maximum size, α(T), in T . To get full credit your algorithm should
run in time O(|V | · |E|) (or better) and you must prove correctness of your algorithm. You
don’t need to analyze the time-complexity of your algorithm and it is sufficient to solve this
problem assuming part (1) (if you want) even if you don’t solve it. [15 points]

Solution: Let us first show part 1. Consider a leaf u ∈ T and let I be a maximum size independent
set I. Note that if degree(u) = 0, then u must be in I (as else we can add u to get a larger
independent set) so we are done.

Now suppose degree(u) = 1 with v being the sole neighbor of u in T . If v /∈ I, we can again add
u to I to get a larger independent set so v must be in I. In this case, form a new set I ′ = I\{v}∪{u}
by removing v and adding u. Clearly I ′ is an independent set as we only added u but removed the
only other possibly conflicting vertex v. We are now done as |I ′| = |I| = α(T).

The idea behind part 2 is to use the above property to build the independent set greedily by
making “safe” choices as we did for spanning trees:

1. Let I = ∅. Initialize a new graph G = T

2. While G 6= ∅:

(a) Find a leaf u ∈ G and add u to I.

(b) Remove u and any neighbor of u (if exists) from G.

3. Return I.

6

Analysis: Call a subset of vertices A feasible if there is a maximal-size independent set in T
which contains A. Call a vertex u safe for A if A∪ {u} is feasible. The correctness will follow if we
show the following invariant: The set I in our algorithm is always feasible.

To prove the claim, suppose it is true at the start of an iteration. Then, note that as G con-
tains all those vertices which are not adjacent to elements of I and I is feasible, for any maximal
independent set I ′ in G, I ∪ I ′ is a maximal independent set in T . Hence, by part (1) a leaf u ∈ G
is safe for I as we can find a maximal-size independent set I ′ ∈ G which contains u.

Remark: For both parts, many people gave an argument based on doing BFS (or DFS) and taking
all “odd” level vertices or “even” level vertices to be the independent set (depending on whichever
is larger). However this doesn’t quite work - while each of these is an independent set, they may
be far from being the maximum. This was given 5 points typically (for each part).

Another argument was to try a dynamic programming approach based on the recurrence: for
any vertex v ∈ T

α(T) = max

{
α(T \ {v})
1 + α(T \ ({v} ∪ {Neighbors of v}))

.

The recurrence follows by considering two cases of whether v is in a maximal-independent set or
not. The problem with this approach is that one has to memorize and memoizing this recurrence
is not so easy. This solution typically got you 10 points for part (2).

7

	Problem
	Problem
	Problem
	Problem
	Problem
	Problem
	 Problem

