
UCLA Instructor: Carlo Zaniolo
Computer Science Department TAs: Suming Chen & Hamid Mousavi

Fall 2010

Student Name and ID:

CS143 MIDTERM EXAM: Closed Book, 2 Hours

• Attach extra pages as needed. Write your name and ID on the extra pages.

• If you need to make any assumptions to solve a problem, please write you
assumptions clearly in your answer.

• Simplicity and clarity of your solutions will count. You may get as few as 0
point for a problem if your solution is far more complicated than necessary, or
if we cannot understand your solution.

• Please write neatly.

Problem Score

A (32%)

B (40%)

C (28%)

Total (100%)

Extra Credit (6 points):

Midterm Score:

1



CS143 Midterm, Fall 2009 — Page: i

A: Queries—32 Points

The relation: warehouse(PartNo, SupplierNo, Price)

describes the suppliers for each part, along with the price they charge. To cut inventory,
the manager of our warehouse wants to eliminate noncompetitive suppliers. Competitive
suppliers are those that supply at least two parts at a minimum cost (however they might
share this minimum with other suppliers). All the others are non-competitive suppliers.

A1 Write an SQL query to find all non-competitive suppliers. Answer: there are many
ways to skin the cat. One is this:

select SupplierNo

from warehouse as w1

where w1.Price = min (select min(w2.Price)

from warehouse as w2

where w2.PartNo=w1.PartNO)

group by SupplierNo having count(w1.PartNo) >=2
Another is this:

select SupplierNo

from warehouse as w1

where w1.Price <= ALL (select min(w2.Price)

from warehouse as w2

where w2.PartNo=w1.PartNO)

group by SupplierNo having count(w1.PartNo) >=2

and we could use the not exist instead of ALL

A2 Modify the previous query by defining competitive suppliers as those that supply at
least two parts at the strict minimum price (ties now are not allowed!).

Answer: It is much easier to work on the second solution, which we can modify as
follows:

select SupplierNo

from warehouse as w1

where w1.Price <ALL (select w2.Price

from warehouse as w2

where w2.PartNo=w1.PartNO

AND w1.SupNO <> W2.SupNO)

group by SupplierNo having count(w1.PartNo) >=2

This basically assures that any other another supplier who supplies the same part
charges more than this supplier. If we try a similar modification on the min query we
get the following WRONG query!

select SupplierNo

from warehouse as w1

where w1.Price < min (select min(w2.Price)

from warehouse as w2

where w2.PartNo=w1.PartNO

AND w1.SupNO <> W2.SupNO)

group by SupplierNo having count(w1.PartNo) >=2



CS143 Midterm, Fall 2009 — Page: ii

This query says that this supplier charges less than other suppliers supplying this
part. But if there no other supplier the min is undefined and we will eliminate the
only supplier for that part! If we want to use the min, we must instead write:

select SupplierNo

from warehouse as w1

where w1.Price < min (select min(w2.Price)

from warehouse as w2

where w2.PartNo=w1.PartNO)

OR not exists (select * from warehouse as w3 where w3.PartNo=w1.PartNO AND w3.SupNO <> W2.SupNO)

group by SupplierNo having count(w1.PartNo) >=2

A3 Write an SQL statement to delete from the warehouse all the tuples where the suppliers
are non-competitive (as defined in A2) and also they are not the sole supplier of that
part.

Answer:

delete from warehouse AS NC

where NC.SupplierNo IN % copy SQL from A2

AND exists (select * from warehouse as w3 where w3.PartNo=NC.PartNO AND w3.SupNO <>NC.SupNO)

A4 Is query A2 expressible in basic RA, which does not have aggregates. You do not
need to write the query, just explain how you will express the conditions involving
”minimum cost” and ”at least two”

Answer: having count(w1.PartNo) >=2 can be expressed using a <>-join, whereas the
min can be expressed using negation.



CS143 Midterm, Fall 2009 — Page: iii

B–Indexes. 40 Points

The relation: took(StudentID, CourseNo, Quarter, Year, Units, Grade)
contains the grades for the courses completed by UCLA students during the last 20 years.
For simplicity, assume that there are 25,000 students enrolled each quarter, and that each
student takes four courses per quarter, and that there are four quarters each year. Then
we get a total of 8,000,000 records. If 10,000 new students enter UCLA every year, we can
assume that in took there are 200,000 different students, each identified by a StudentID.
On average, a student took 40 different courses.

B1 If the file blocks hold 4096 bytes and each tuple in took requires 200 bytes. How
many blocks will then be needed to store the unspanned tuples of this relation ?

Answer: 4096/200 =20.48: thus 20 unspanned tuples per block. Now: 8,000,000/20=
400,000 blocks.

There is a sparse index on StudentID, CourseNo, where StudentID, CourseNo and the
pointer to the file take 10 bytes each, and the index is implemented as a B+ tree.

B2 Compute the levels and the blocks at each level of the B+ tree, assuming a best-case
scenario.

Best Case: (4096-10)/30= 136.2; Thus, N=137. Now 400,000/136 = 2,941.17, i.e.,
2942 at the bottom level. 2942/137= 21.47, i.e. 22 blocks at first level. Then the
root.

B3 Compute the levels and the blocks at each level of the B+ tree, assuming a worst-case
scenario.

Worst case: 68 pointers down. 400000/68 = 5 882.35 i.e. 5822 in the middle level:
5,883/69 = 85.246 i.e. 85 (with 86 less than half full). Then the root.

B4 How many blocks from the B+ tree and file will the DBMS retrieve from disk to
answer the following query: Find the GPA (average grade weighted by units) for a
given student. Report your results first assuming the best-case and then assuming the
worst-case scenario; also assume that the buffers are initially empty.

Best case: 3 blocks from the B+ tree and then one file block (possibly two if a student’s
courses are spread over two blocks) Worst case: the same.

B5 We now have that computes the average grade that all students who took CS144 got
in CS144. How many blocks from the B+ tree and file will the DBMS retrieve from
disk to answer this query? Report your results first assuming the best-case and then
assuming the worst-case scenario; also assume that the buffers are initially empty.

The DBMS will follow the leftmost link in the B+ tree and then the chain at the
bottom level, and from there, jump to all the blocks in the file .

So 2 blocks down the B+ tree, then all 2920 blocks at the bottom level of the B+ tree,
and finally 400,000 blocks of file for best case B+ tree. For the worst case, replace
2920 with 5420.

(For a dense index we could try to find all the occurrences of ”CS144” in the index
and only fetch those blocks.)



CS143 Midterm, Fall 2009 — Page: iv

C: Potpourri—28 Points

Please indicate if the following statements are TRUE or FALSE. You must write a short
sentence explaining your answer:

C1 The index of problem B is a clustered index.

*TRUE, Since the index is sparse the records in disk must be ordered. This implies
that the index is of clustered type.

C2 Sequential I/O is more expensive than random I/O.

*FALSE. The opposite holds: random access incur delay of the arm movement (before
the rotational delay of the sequential access)

C3 To modify a block on disk, the block must be read into memory first.

*TRUE, unless we just overwrite it with completely new content.

C4 For queries of the form σA>k(R) hashing is better than B+ trees.

*FALSE. Hashing works great for equality-based searches, but does not help at all on
order-based searches since it does not preserve the order of recordes.

C5 With extensible hashing we never have to use overflow buckets.

*FALSE. When many records share the same key value, and they are hashed into the
same bucket which may cause the overflow into supplementary buffers.

C6 The intersection of relations R(A,B) and S(A,B) can be expressed using the set set
difference operator.

*TRUE: R ∪ S = R− (R− S)

C7 The symmetric outer join of R1 and R2 can have fewer tuples than R1.

*FALSE. Every time that a tuple in R1 is not matched by a tuple in R2, we preserve
it by padding it with null values.



CS143 Midterm, Fall 2009 — Page: v

Extra Credit [6 points]

Say that we execute an SQL query Q on a database containing N tuples that, because
of previous queries, are already in main memory buffers. Our DBMS process Q by first
translating it into an RA expression E, and then letting the DBMS query optimizer optimize
E. Say that E contains M operators. Please, answer the following questions and explain
your answers:

• Is the worst-case optimization of E exponential or polynomial in M?

It is exponential on the number of tables in the join. The optimizer will enumerate all
their permutations to find the one that has the least cost! The number of permutations
of M elements grows exponentially with M (actually faster than that).

• Is the worst case execution of Q (i.e., the execution of E after optimization exponential
or polynomial in N?

All the relational operators are polynomial time on N, the size of the table. M of
those is still polynomial considering M is independent from N. (This even holds for
the case of having no optimization)–particularly after the smart optimizer has figured
out how to minimize the exponents and coefficient of that polynomial.

• Is the worst-case execution of Q exponential or polynomial in M?

If we take the cartesian product of M tables of size K we obtain KM tuples. So, it is
exponential.

Conclusion: Queries that use joins of more than 10 tables are too expensive to opti-
mize and execute! Of course, users do not write such complex queries– unfortunately
poorly designed software might end up doing that!


