CS 188

P2P Systems Winter 2010 MIDTERM

Professor Giovanni Pau Tuesday, February 9, 2010

This test is closed book

Estimated time: 1h and 50 minutes.

Name _____

Student ID _____

Do NOT turn to the next page until told to do so.

Exercise	Value	Score
1	30	
2	30	
3	30	
4	30	
TOTAL	120	

Intentionally empty.

- 1) Answer the following True/False (5 min)
- 1. Kademlia uses the XOR to decide the distance between two nodes in the routing space **TRUE**
- 2. Napster central server stores the files to be exchanged. FALSE
- 3. The MD5 hashing algorithm can be used to store a <key,vaue> record in a DHT. **TRUE**
- 4. A DHT can be used as distributed index to build a p2p storage system. **TRUE**
- 5. Gnutella networks use the Ping-Pong protocol to perform content searching. FALSE
- 6. The Random Walk protocol is used by Skype to locate users on the network. FALSE
- 7. Napster is a fully distributed system and very hard to shutdown. FALSE
- 8. Gnutella trades efficiency for potential failure in performing search. **TRUE**
- 9. The buffer for real-time streaming applications is used to compensate changes in network performance over time. **TRUE**
- 10.Chord neighbors are sufficient to perform routing. TRUE
- 11. In Skype Super Peers are used for audio packet forwarding in each call. **FALSE**
- 12.Chord is more efficient of Kademlia in performing routing (efficiency is computed as number of hops) **FALSE**
- 13. The failure of 1 single entry in the pastry leafset compromises the pastry routing and partitions the network. **FALSE**
- 14.Pastry neighborhood set essential to perform routing. FALSE

- 2) Multiple choice (correct answer can be 1, 2, all or none)
- 1. Consider a Chord Ring in the address space 0..512, the routing table will contain up to:

<u>2 Fingers</u> 8 Fingers <u>— 0 Fingers — 4 Fingers</u>

None of the Above

2. Consider a Chord Ring with 1,000,000 nodes, the aaverage number of hops to route a node is:

2 hops 8 hops 7 hops 4 hops

None of the Above ____

3. The BitTorrent tracker:

4. Pastry Routing table for node A:

In row k contains the IPs of all nodes that share K bit with A_____ In row k contains IPs for first 16 nodes sharing K bits with A _____ In row k contains the IPs of all nodes that share K-1 bit with A_____ In row k contains IPs of Log16(K) nodes that share K bit with A_____ None of the above _____

- 5. Kadmelia Buckets: <u>Contain exactly 1 record</u> <u>Contain a number of records proportional to the network size</u> <u>Contain a pre-defined number of records</u> <u>None of the above</u>
- 6. In a three based P2P streaming system:

Nodes store the content associated to the hash of a Key____ Nodes store a <key,value> in closest ID to a given Key____ Nodes store a <key,value> and related content in the same place ____ Nodes store data chunks in temporary buffer for forwarding None of the above____

7. A tree based streaming system:

Needs to be designed as a deep tree to minimize the contribution by each single node

<u> </u>					
Needs to be	designed as a	-deen tree to	minimize the	: delav at the l	eafs
None of the	Above				

=

1. CHORD Routing

Consider the following ring space 0..512 in Cord. :

The following nodes are in the ring: 0, 2, 4, 8, 14, 16, 20, 22, 32, 64, 127, 128, 224, 255

Write the routing table for NODE. 16

Range	Index	Node
[17,18)	0	20
[18,20)	1	20
[20,24)	2	20
[24,32)	3	32
[32,48)	4	32
[48,80)	5	64
[80,144)	6	127
[144,16)	7	224

2. Pastry Routing

d

Consider the following ring space 0..255 in Pastry. :

The following nodes are in the ring: 0, 2, 4, 8, 14, 16, 20, 21, 22,23, 24, 32, 33, 34, 35, 64, 127, 128, 224, 255

A) For node **16 write down the pastry leafset** assuming there are a total of 16 entries. Point out which nodes are part of the **lower** leafset and which one are part of the **higher** leafset.

Lower	14	8	4	2	0	255	224	128
Upper	20	21	22	23	24	32	33	34

B) For the same ring as in point A write down for node 16 the row 0 of the pastry routing table (TIP: Think in Binary)

	0	1	2	3	4	5	6	7	8	9	а	b	с	d	е	f
0	0x00	0x14	0x20		0x40			0x7f	0x80						0xed	0xff

Dec	Hex		Dec	Hex	Dec	Hex
0	00		22	16	127	7F
2	02		23	17	128	80
4	04		24	18	224	E0
8	08		32	20	255	FF
14	0E		33	21		
16	10		34	22		
20	14]	35	23		
21	15		64	40		

Dec	Bin	Dec	Hex
0	00000000	22	00010110
2	00000010	23	00010111
4	00000100	24	00011000
8	00001000	32	00100000
14	00001110	33	00100001
16	00010000	34	00100010
20	00010100	35	00100011
21	00010101	64	01000000

Dec	Hex
127	01111111
128	10000000
224	11100000
255	11111111

3. Consider a Kademlia network with 2^3 nodes please write down the follwoing:

A) The network topology assuming all the nodes are present.

B) Indicate the K-bukets and the nodes that fall in each K-buckets considering a K bucket of size 2.

Seen from Node 000

Distance	K-Bucket
[0,1]	1
[2,3]	<u>010, 011</u>
[4-7]	<u>100, 101</u>

C) What would be the situation with a K-bucket size 3?

Seen from Node 000

Distance	K-Bucket
[0,1]	<u>1</u>
[2,3]	<u>010, 011</u>
[4-7]	<u>100, 101,110</u>

4. Consider a tree with a depth of 4 levels and a fanout of 3 nodes per level fully populated. The average delay to cross a level is 400msec:

A) what is the delay for streaming a a video at Level 4?B) and at Level 2?

LEVEL 4: 4x400=1600ms LEVEL 2: 2x400=800ms

C) if the stream is 300Kbit/sec what is the minimum buffer size needed at each level to avoid interruption in a static ideal condition? (<u>i.e. the network does not</u> <u>change performance</u>)

There is no Buffer needed 0 is the size due NO Jitter!!!

D) With a 300Kbit/s streaming, Can a node with connected to a DSL performing 1024/768 join this tree at the leaf level?, Why?

YES --> A leaf does NOT upload ANYTHING

E) With a 300Kbit/s streaming, Can a node with a DSL 1024/768 join the tree at Level 1. (Root is considered level 0). Why?

<u>NO---> Recall that the Fanout of this Tree is 3 so if we have 300Kbit/s would be</u> <u>300*3=900Kbps >> 768Kbps</u>