
CS 112: Modeling Uncertainty in Information Systems
Midterm Solutions 2012

Problem 1 (25 points)

Every Wednesday before CS112, you meet your friends for lunch. On any given week, independent of your
lunch choices on other weeks, you go to the food court at Ackerman with probability 0.6. Otherwise, you go
to the Court of Sciences. When you go to Ackerman, there are lots of available options, but the tacos are
pretty good, so you order tacos with probability 0.2. There are fewer options at the Court of Sciences, so
you end up ordering tacos with probability 0.3 when you go there.

(a) What is the probability that you order tacos on any particular Wednesday?

(b) Given that you did not order tacos on a particular Wednesday, what is the probability that you went to
Ackerman?

(c) If you continue this routine for all ten weeks of the quarter, what is the expected number of times you
will go to Ackerman?

(d) If you continue this routine for all ten weeks of the quarter, what is the expected number of times that
you will order tacos at the Court of Sciences?

(e) If you continue this routine for all ten weeks of the quarter, what is the probability that you will order
tacos at the Court of Sciences exactly twice?

Solution

Let Ai be the event that I go to Ackerman on week i and Ti be the event that I order tacos on week i. We
are given that:

P (Ai) = .6

P (Ti|Ai) = .2

P (Ti|Ac
i ) = .3

(a)

P (Ti) = P (Ti|Ai)P (Ai) + P (Ti|Ac
i )P (Ac

i ) By law of total probability
= .2× .6 + .3× .4

= .24



(b)

P (Ai|T c
i ) =

P (T c
i |Ai)P (Ai)

P (T c
i )

By Bayes rule

=
P (T c

i |Ai)P (Ai)

1− P (Ti)

=
.8× .6

1− .24
From part (a)

=
48

76

=
12

19

(c) Let X be a random variable that denotes the number of times I will go to Ackerman in the 10 week
period. It is clear that X is a binomial random variable with parameters n = 10 and p = .6. The
expected value of a binomial random variable with parameters n and p is simply np, so we have:

E (X) = np

= 10× .6

= 6

(d) On a given week the probability that I will go to to the Court of Sciences and have tacos is:

P (Ac
i ∩ Ti) = P (Ti|Ac

i )P (Ac
i ) By the multiplication rule

= .3× .4

= .12

Let Y be a random variable the denotes the number of times I will go to the Court of Sciences and have
tacos in the 10 week period. This is also a binomial random variable but with parameters n = 10 and
p = .12 as calculated above. So:

E (Y ) = np

= 10× .12

= 1.2

(e) In part (d) I showed that Y is a binomial random variable with parameters n = 10 and p = .12. The
PMF of Y is therefore given by:

P (Y = y) =

(
n

y

)
(1− p)

n−y
py

So we have:

P (Y = 2) =

(
10

2

)
(1− .12)

8
.122

=
10!

8!2!
.888.122

= .233



Problem 2 (20 points)

A device used by the Lottery Commission can generate any number between 2 and 30, inclusive. The
numbers are not necessarily equiprobable and the probability of any individual number is a closely-guarded
secret. The following probabilities are known, however:

• A is the event that the number is prime; P (A) = 0.4

• B is the event that the number is less than 15; P (B) = 0.5

• C is the event that the number is a prime less than 15; P (C) = 0.3

You might find it useful to draw Venn diagrams for intuition.

(a) Are events A and B independent? Give a convincing justication (e.g., proof, counterexample, theorem,
etc.) for your answer.

(b) Event D is the event that the number generated is a prime greater than or equal to 15. Express event
D in terms of the other events that have been defined and calculate P (D).

(c) Event E is the event that the number generated is either a prime or less than 15 or both. Express E in
terms of the other events that have been defined and calculate P (E).

(d) If the number generated is greater than or equal to 15, what is the probability that it is not prime?

Solution

We observe that C = A ∩B.

(a)

P (A ∩B) = P (C) Since C = A ∩B

= .3

P (A)P (B) = .4× .5

= .2

So P (A ∩B) 6= P (A)P (B) which means that A and B are not independent.

(b) D = A ∩Bc, therefore

P (D) = P (A ∩Bc)

= P (A−B ∩A)

= P (A− C) Since C = A ∩B

= P (A)− P (C) Since P (A) = P (A− C) + P (C)

= .4− .3

= .1

(c) E = A ∪B. So we have

P (A ∪B) = P (A) + P (B)− P (A ∩B) Inclusion exclusion rule
= P (A) + P (B)− P (C) Since C = A ∩B

= .4 + .5− .3

= .6



(d)

P (Ac|Bc) =
P (Ac ∩Bc)

P (Bc)

=
P (Ac ∩Bc)

1− P (B)

=
P ((A ∪B)

c
)

1− P (B)

=
1− P (A ∪B)

1− P (B)

=
1− P (E)

1− P (B)
From part (c)

=
1− .6

1− .5

= .8

Problem 3 (15 points)

Suppose that a system consists of 20 disks organized into 4 groups of 5 disks each. Data is replicated within
each group such that data becomes inaccessible if 2 or more disks fail within the same group. (Another way
of saying the same thing is that all data remains accessible if no group has more than one failed disk.) All
disks are equally likely to fail.

Find the probability that some data is inaccessible given that 3 disks have failed.

Solution

We will compute this as 1 minus the probability that all the data is accessible. Let A be the event that all
the data is accessible. Since all the outcomes are equally likely, we can use a counting argument to calculate
P (A).

The number of outcomes in A can be calculated as follows. If all the data is accessible, the three failed disks
must be in different groups. There are

(
4
3

)
different ways to pick the 3 groups that have the failed disk. For

each of those groups there are 5 ways to pick a which disk failed. Since there are 3 groups with failed disks,
this means that there are 53 ways to pick which disks have failed. So:

|A| =
(
4

3

)
53

Since there are 20 disks, there are
(
20
3

)
ways for 3 disks to fail so,

|Ω| =
(
20

3

)



Therefore:

P (A) =
|A|
|Ω|

=

(
4
3

)
53(

20
3

)
=

4!
3!5

3

20!
3!17!

=
4!17!

20!
53

Probability that some data is inaccessible = P (Ac) = 1− P (A) = 1− 4!17!
20! 5

3.

Problem 4 (10 points)

30 of the 90 students in an intro programming class are sloppy programmers. On expectation, a program
written by one of these students has 10 bugs. The rest of the class are more diligent, with a mean of only
3 bugs per program. An instructor chooses a random student in the class and evaluates a program she has
written. Let X be a random variable denoting the number of bugs in this program. What is E[X]?

Solution

Let A be the event that the randomly chosen student is a sloppy programmer. We are given that E [X|A] =
10, E [X|Ac] = 3, P (A) = 30

90 , and P (Ac) = 60
90 .

E [X] = E [X|A]P (A) + E [X|Ac]P (Ac) By total expectation

= 10× 30

90
+ 3× 60

90

=
16

3
= 5.33

Problem 5 (20 points)

There are five identical computers in a lab. Two of them have old software, and both of these have a
probability pold of crashing each time a student uses them. The rest have new software, and have a smaller
probability pnew of crashing when they are used.

(a) A bored lab supervisor chooses a computer at random and observes n students using this computer dur-
ing his shift. The computer crashes for k of these users. Given these observations, what is the probability
that the randomly chosen computer has the old software? (You can leave your answer in terms of pold,
pnew, k, and n.)

(b) One day the lab supervisor is extra bored and decides to conduct the following experiment. He first
chooses one of the five computers at random. Then he watches students using that computer until it
fails. If he watches at least ten students without seeing it fail, he’ll give up. Let X be a random variable
denoting the number of students he observes during this experiment. What is the PMF of X?



Solution

(a) Let A be the event that the randomly chosen computer has the old software.
Let K be the random variable specifying the number students for whom the computer crashes.
We are given that P (A) = 2

5 . We observe that P (K|A) has a binomial PMF with parameters n and
pold and P (K|Ac) has a binomial PMF with parameters n and pnew.

P (A|K = k) =
P (K = k|A)P (A)

P (K = k)
By Bayes rule

=
P (K = k|A)P (A)

P (K = k|A)P (A) + P (K = k|Ac)P (Ac)
By law of total probability

=

(
n
k

)
(1− pold)

n−k
pkold × 2

5(
n
k

)
(1− pold)

n−k
pkold ×

2
5 +

(
n
k

)
(1− pnew)

n−k
pknew × 3

5

=
2
5 (1− pold)

n−k
pkold

2
5 (1− pold)

n−k
pkold +

3
5 (1− pnew)

n−k
pknew

(b) Let A be the event that the randomly chosen computer has the old software.
We consider two cases separately.
Case 1: 1 ≤ x ≤ 9

When 1 ≤ x ≤ 9, X = x is the event that the computer did not crash on the first x − 1 students and
then crashed on the xth student. It follows that

P (X = x|A) = (1− pold)
x−1

pold

and

P (X = x|Ac) = (1− pnew)
x−1

pnew

So we have:

P (X = x) = P (X = x|A)P (A) + P (X = x|Ac)P (Ac) By law of total probability

= (1− pold)
x−1

pold ×
2

5
+ (1− pnew)

x−1
pnew × 3

5

Case 2: x = 10

X = 10 is the event that the computer did not crash on the first 9 students, so

P (X = 10|A) = (1− pold)
9

and

P (X = 10|A) = (1− pnew)
9

So we have:

P (X = 10) = P (X = 10|A)P (A) + P (X = 10|Ac)P (Ac) By law of total probability

= (1− pold)
9 × 2

5
+ (1− pnew)

9 × 3

5



Problem 6 (10 points)

Suppose that X and Y are random variables with the same variance, i.e., V ar(X) = V ar(Y ). Show that
X + Y and X − Y are uncorrelated, i.e., that Cov(X + Y,X − Y ) = 0.

Solution

Cov (X + Y,X − Y ) = E [(X + Y ) (X − Y )]− E [X + Y ]E [X − Y ]

= E [(X + Y ) (X − Y )]− (E [X] + E [Y ]) (E [X]− E [Y ])

= E
[(
X2 − Y 2

)]
−
(
E [X]

2 − E [Y ]
2
)

=
(
E
[
X2

]
− E [X]

2
)
−

(
E
[
Y 2

]
− E [Y ]

2
)

= V ar (X)− V ar (Y )

= 0 since V ar (X) = V ar (Y )


