UCLA Computer Science 111 (fall 2019) midterm
100 minutes total, open book, open notes,
no computer or any other automatic device

Name: - " Student ID

et

(mﬁdulariﬁijnlient/service, hardware virtualization, and software
virtualization.

la (6 minutes). Give an example of each approach as used on SEASnet.

1b (6 minutes). Briefly discuss the pros and cons of the three
approaches. '

[page 2]
2. POSIX specifies a function ‘pause’ that suspends execution of the
current thread until a signal arrives. When a signal is delivered,
this either terminates the process or invokes the corresponding signal
handler (depending on how signals are normally handled); if the
latter, if the signal handler returns then ‘pause’ returns -1 and sets
errno to EINTR.

2a (10 minutes). Suppose you're running on a stripped-down kernel
that implements only the following system calls: alatmh chdir, close,
dup2, execve, _exit, fork, getpid, kill, lseek, open, pipe, read,
rename, signal, unlink, waitpid, and write. Write a C implementation
of ‘pause’ as best you can, using just these system calls along with
ordinary user-mode code. Assume that each system call fails and sets
errno to EINTR if interrupted.

2b (5 minutes). Explain any shortcomings in your library
implementation, compared to doing ‘pause’ via a true system call
(which is what GNU/Linux does).

[page 3]
3 (8 minutes). Loading (and chain-loading) is common during booting;
for example, traditionally the CPU runs the BIOS, which loads the MBR,
which loads the VBR, etc. Does it make sense for shutdown to reverse
this process? That is, is it reasonable for an operating system to do
storing (or chain-storing) during shutdown? If so, explain what
would motivate storing and/or chain-storing and how it should be
implemented; if not, explain why not.

4. In fair round-robin (FRR), a newly arrived job is placed at'the end
of the queue of jobs waiting to run. In unfair round-robin (URR), a
newly arrived job is placed at the beginning of the queue.

4a (6 minutes). For{ job mixes on SEASnet, which should be
better for average wait time: FRR or URR? Which should be better for
average turnaround time? Briefly explain your reasoning. Assume that
SEASnet uses a 10 ms quantum with a 3 ps context switch time and that
it is runnina tvoical student proarams.

(This problem is continued on the next page.)

[page 4]
4b (12 minutes). Suppose the quantum is 10 ms and context switches
consume 3 ps, so that timer interrupts occur every 10.003 ms and each
job gets 10 ms of CPU time per quantum. And suppose also that the
iob mix is as follows:

30
20
40
10

T O W >
(O30, IS4 <>)

1
2
where the columns are job ID, arrival time, and run time,

respectively, where all times are in milliseconds. Calculate the

average wait time and the average turnaround time for this job mix
assuming FRR. Similarly, calculate the two averages assuming URR.

4c (8 minutes). Did your answer to (b) confirm the hypothesis in your
answer to (a)? If so, give a job mix that disconfirms your
hypothesis; if not, give a job mix that confirms your hypothesis. Use

the simplest joB“ﬁfiwihat you can. Or, if it's not possible to give

s

such ajob mix; explain why not.

[page 5]

5. Consider the following implementation of read_sector discussed in

class.
void read_sector (int s, char *a)
{
/* 1%/ while ((inb (0x1f7) & Oxc@) != 0x40) ‘
J* 2%/ continue;
/* 3%/ outb (0x1f2, 1);
/* 4%/ outb (Ox1f3, s & Oxff);
/* 5%/ outb (0x1f4, (s>>8) & Oxff);
/* 6%/ outb (0x1f5, (s>>16) & Oxff);
/* 7%/ outb (0x1f6, (s>>24) & Oxff);
/* 8%/ outb (0x1f7, 0x20);
/* 9%/ while ((inb (0x1f7) & Oxc0) != 0x40)
/*10%/ continue;
/*11*/ insl (0x1f0, a, 128);
}
What, if anything, would go wrong if we did the following? Briefly
explain.
5a (3 minutes). In /*1*/, change ‘!=' to '==".

5b (3 minutes). In /*3*/, change the 2nd outb argument from 1 to 2.

5¢ (3 minutes). Put a copy of /*8*/ before /*1*/.

5d (3 minutes). Interchange /*7*/ and /*3*/.

5e (3 minutes). Insert the statement ‘s++;’ between /*6*/ and /*7*/.

[page 6]
6 (12 minutes). In double buffering, the computer arranges to read
input block N+1 while processing block N so that input and CPU
processing can be done in parallel. Design an API involving a new

function read _sector2 that supports (o) buffering. Keep the API as
_simple and as_close to read sector as you can. You may need to add

more functions to -your API. Implement your API in the same style as
read_sector, and give sample code that invokes your API to get double
buffering. To save time in writing your answer, you can use
abbreviations like ‘/*1-5%/' to stand for lines 1 through 5 of

: [page 7]
7. Consider the following program AD-5.2-variant.c, derived from
Arpaci-Dusseaus’ Figure 5.2:

1 #include <stdio.h>

2 #include <unistd.h>

3 int main (void) {

4 int pid = getpid (); _

5 printf ("hello world (pid:%d)\n", pid);
6 int rc = fork ();

7 if (rc < 0) {

8 fprintf (stderr, "fork failed\n");
9 return 1;
10 }
11 pid = getpid ();
12 if (rc == 0) {

13 printf ("hello, I am child (pid:%d)\n", pid);

14 } else { A

15 printf ("hello, I am parent of %d (pid:%d)\n", rc, pid);
16 }. A

17 - return 0;

18 }

Consider the following behavior that I got when I compiled and ran
this program on lnxsrv07.seas.ucla.edu:

$ gcc -02 -Wall AD-5.2-variant.c

$./a.out # First program run

hello world (pid:20600)

hello, I am parent of 20601 (pid:20600)
hello, I am child (pid:20601)

$./a.out | cat # Second program run
hello world (pid:20605)

hello, I am parent of 20607 (pld:20695)
hello world (pid: 20605)

hello, I am child (pid:20607)

OWoooNOUTE WN M

ju-

7a (4 minutes). What race could cause the output to look
substantially different from either the first or the second run, and
what would this outout look like?

(This problem is continued on the next page.)

[page 8]
7b (8 minutes). Explain each difference in the outputs of the two
program runs.

