UCLA Computer Science 111 (Fall 2008)
Midterm
100 minutes total, open book, open notes

Name: Student ID:

e e s ' + + + +

123145167 |89 |total
| | I
| |
|

|
|
|
|
+ ——
I
|
|
+
|
|
|
|
+
|
|
|
|
+
|
+
+
+
+
+

1 (8 minutes). Suppose the x86 architecture did not trap
when executing privileged instructions in non—privileged
mode. Instead, when the CPU is in normal (non—privileged)
mode and executes a privileged instruction such as INT,
nothing happens; it is equivalent to a no—op. If this were
true, could you implement system calls to enforce hard
modularity for an operating system like Linux, with
acceptable performance? If so, explain how; if not,

explain why not.

2 (6 minutes). Suppose you run the following shell command
in an ordinary empty directory that you have all

permissions to. What will happen? Describe a possible
sequence of events.

cat <mouse | cat | cat >dog

3 (10 minutes). WeensyOS 1, like many operating systems,
implements getpid as a system call. Would it be wise to
implement it as an ordinary user—space function whose
implementation simply accesses static memory accessible to
the current process? Explain the pros and cons of this
alternate implementation.

4. POSIX requires that a 'write’ system call requesting a
write of fewer than PIPE_BUF bytes to a pipe must be
atomic, in the sense that if multiple writers are writing

to the same pipe, the output data from the 'write’ cannot

be interleaved in the pipe with data from other writers.
PIPE_BUF is up to the implementation, but must be at least
512 (on Linux, it's 4096). A 'write’ of more than PIPE_BUF
bytes need not be atomic.

4a (5 minutes). What's the point of this atomicity
requirement? What sort of program works if the
implementation satisfies this requirement, but does not
work otherwise?

4b (5 minutes). Suppose you want to write a super—duper OS
in which PIPE_BUF is effectively infinity (it's equal to

2**64 - 1, say). What sort of problems do you anticipate
having with your OS?

4c (5 minutes). Did your solution to Lab 1b rely on this
requirement? If so, explain where; if not, give an example
of what happens if the requirement is not met.

5 (8 minutes). One way that a process can notify another
is via the 'kill' system call. Another way is via the

‘write’ system call, via a pipe. Isn't it redundant to

have two different ways to send notifications? Wouldn't it
be simpler if the API omitted ’kill’, and we asked
programmers to use only 'write’ to send notifications? If
so, explain how you’d replace arbitary calls to 'kill’ with
calls to 'pipe’ followed by calls to 'write’; if not,

explain why ’kill' cannot in general be replaced in this
way.

6 (8 minutes). Does it make sense to use SJF in a
preemptive scheduler? If so, give an example; if not,
explain why it doesn’'t make sense.

7 (8 minutes). Suppose you have a single blocking mutex
(not a simple mutex) around a shared pipe object. Suppose
each reader and writer locks the object only for a short
period of time, and that there are plenty of active readers
and writers. Can a would—be reader starve? If so, show
how. If not, explain why not. If your answer depends on
the implementation, explain your assumptions and why they
matter.

8. Consider the following source code, adapted from the
implementation of sys_wait in mpos—kern.c’s 'interrupt’
function, in WeensyOS 1.

void
interrupt(registers_t *reg)

1

2

3

4 current—>p_registers = *reg;
5 switch (reg—>reg_intno) {
6

7

8

9

case INT_SYS_WAIT: {
pid_t p = current->p_registers.reg_eax;

if(p<=0

10 || p>=NPROCS

11 [| p == current—>p_pid

12 [| miniproc[p].p_state == P_EMPTY

13 Il 0)

14 current—>p_registers.reg_eax = -1,

15 else if (O

16 [| miniproc[p].p_state == P_ZOMBIE

17 11 0)

18 current—>p_registers.reg_eax = miniproc[p].p_
exit_status;

19 else

20 current—>p_registers.reg_eax = WAIT_TRYAGAIN;

21 schedule();

22 }

23

24 default:

25 for (;;)

26 continue;

27 }

28 }

For each of the following lines in the source code, give an
example of exactly what could go wrong, from the
application’s viewpoint, if you omitted that particular

line:

8a (3 minutes). Line 4

8b (3 minutes). Line 10

8c (3 minutes). Line 11

8d (3 minutes). Line 12

8e (3 minutes). Line 16

8f (3 minutes). Lines 19 and 20 (omitting both at once)
89 (3 minutes). Line 21 (replacing it with "break;")

9. Suppose we have an implementation of pipes in which we
write not just single bytes, but large objects all at once.

Our idea is to have "super fine—grained locking", one in
which there is a lock associated with each object in the
buffer. (This would be consume a lot of memory for our
previous single-byte implementation, of course, since the
locks are much bigger than single bytes; but for big

objects the memory overhead is negligible.) The hope is
that with super fine—grained locking, we can have even more
simultaneous threads access our pipes than we could with
ordinary fine—grained locking. Here's the implementation:

enum { N = 1024, LARGE = 1048576 };
typedef struct { char contents[LARGE]; } large_object;

struct pipe {
mutex_t bufm[N];
large_object buf[N];
mutex_t rm, wm;
size tr, w;

void writeobj(struct pipe *p, large_object *0) {
lock(&p—>wm);
while (p—>w — p—>r == N)

continue;

size_ tw_mod_N = p—>w++ % N;
lock(&p—>bufm[w_mod_N]);
p—>buf[w_mod_N] = *o;
unlock(&p—>bufm[w_mod_N]);
unlock(&p—>wm);

}

9a (8 minutes). This implementation has some correctness
bugs. Identify and fix them. Do not fix performance bugs,
just correctness ones.

9b (8 minutes). Now, let’s take a look at the performance
bugs. Assuming the correctness bugs are fixed, how well
does this implementation achieve the performance goals for
super fine—grained locking as described above? For each
performance flaw you find, suggest how you’d go about
improving it, if the goal is mainly to increase

parallelism. Or, if it can’t be improved, explain why not.

