SOLUTION LAST Name:

FIRST Name:

 $\text{University ID:}\label{eq:univ}$

Discussion Section: The Contract of the Contra

PHYSICS 1C: Electrodynamics, Optics, and Special Relativity

Fall 2017, Lecture Series 2

Practice Midterm 2

Time allowed: 50 minutes

Answer all questions.

Calculators are permitted in this exam

The numbers in the margin indicate the weight that the examiners expect to assign to each part of the question. ä,

<u> 1980 - Johann Barn, mars ann an t-Amhain an t-Amhain ann an t-Amhain an t-Amhain an t-Amhain an t-Amhain an t-</u>

Section A

1. Two perfectly conducting plates are placed 30 cm apart, and an electromagnetic plane standing wave is set up between them. Draw diagrams to show the electric field configuration of the three longest wavelength standing waves that may arise. What is the wavelength in each case?

 $[6]$

 $[6]$

2. A ray of light is travelling in a glass cube that is totally immersed in water. You find that if the ray is incident on the glass-water interface at an angle to the normal larger than 48.7° then no light is refracted into the water. The refractive index of water is 1.333. What is the refractive index of the glass?

Water $rac{1}{6}$ 487 $sin \theta_{c} = \frac{n_b}{n_a}$ 48.70 is Critical angle: = $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$

3. By considering the case of a charging parallel-plate capacitor, explain why Ampère's law, $\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 i_C$, is not complete, and explain how the situation can be resolved by including a displacement current. [Hint: you should include a diagram in your answer.] The capacitance of a parallel-plate capacitor is given by $C = \epsilon_0 A/d$ and the charge stored on a plate is given by $q = CV$, where the symbols have their usual meanings.

Ampèes law should be independent of the chosen surface Cas long as the boundary is the same). This no longer holds for a charging capacitor! chack The ncurrent through S_i is i.e., but is zero through S_i . This can be fixed by adding a displacement current due to changing electric flun between the plates:

$$
i_b = \epsilon_{\circ} \frac{dE_{\bar{\epsilon}}}{dt}
$$

It can be shown that this is equal to the acce value of He chage current:

> choge on copaciter plate= $VC = \frac{\epsilon_0 VA}{\Lambda} = \epsilon_0 E A = \epsilon_0 \Phi_E$ $\Rightarrow \frac{\alpha q}{\lambda t} = i_c = \epsilon_0 \frac{dE_f}{\lambda t}$

The improved Ampères law, $\oint \vec{E} \cdot d\vec{l} = \mu_c(i_c + i_b)$ Noumorks for any choice of surface.

 $[12]$

Section B

4. A long cylindrical solenoid has radius b , length l , and n_1 turns of wire per unit length, and carries a current i_1 .

(a) Determine the self-inductance L_1 of the solenoid. The magnetic field inside an ideal solenoid is given by $B = \mu_0 nI$, where the symbols have their usual meanings].

 $[6]$

 $[8]$

 $(n, t)(\mu_{0}n, i)(\pi b^{2})$ $\frac{(n, t)(BA)}{t}$ $A = \pi b$ ² $\mu_0 n_1^2$ l π

(b) A similar solenoid of radius $a < b$ and n_2 turns per unit length is placed inside the first one. Both solenoids have the same length. Calculate the magnetic flux through the smaller solenoid when the current through the larger solenoid is i_1 . Hence determine the mutual inductance of the system.

= $(n_z t)(\mu_0 n_1 i_1)(\pi a^2)$ (Finding I₂,
= $\underline{n \mu_0 n_1 n_2 t_1}$ a² (Findling I₂)
= $\underline{n \mu_0 n_1 n_2 t_1}$ a² (is fine tax) $N_2 \Phi_1 = N_2 B_1 A_2$ $\pi\mu$, n_1n_2 ζa^2

(c) The pair of solenoids is used as a transformer in a circuit. A current $i_1(t)$ = $I_1 \cos(\omega t)$ is passed through the first (larger) solenoid. The second solenoid is connected to a circuit containing a resistor with resistance R . Calculate the induced emf in the second circuit, the resulting current, and the average power dissipated in the resistor. [Hint: the solenoid in this case is not ideal, so you will need to make use of the mutual inductance]

$$
f(t) = \frac{e^{\frac{t^{2}}{2}}}{2} = -M\frac{di}{dt} = -M\frac{d}{dt}(\pm cos(\omega t))
$$
\n
$$
= \frac{1}{2}M\frac{d}{dt} = -M\frac{d}{dt}(\pm cos(\omega t)) = \frac{1}{2}(\frac{1}{2}m_{0}n_{1}n_{2} + a^{2}\frac{1}{2}\omega sin(\omega t))
$$

$$
\frac{d}{dx} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{e^{2}(1)}{2} = \frac{M_{\perp 1}^{2} \omega}{2} \sin(\omega t)
$$

 $P_2(t) = i^2 R = \left[\frac{M I_i \omega}{R} sin(\omega t)\right]^2 P$ R should be in $= M^2 I_l^2 \omega^2 R \sin^2 (\omega t)$ denominator here $P_{av} = \langle M^{2}I_{1}^{2}w^{2}Rsin^{2}(\omega t)\rangle$ Aveage pour: $=\frac{1}{2}M^{2}\overline{I}_{1}^{2}\omega^{2}R$

 $\overline{5}$

 $[11]$

5. Solar panels convert sunlight into electrical power. On a sunny day, sunlight at the surface of the earth is 1kilowatt per square meter, which determines the maximum output of a solar panel. You may treat air as a vacuum for this problem.

(a) What is the RMS magnetic field of the sunlight just before hitting the panels?

 $[7] \centering% \includegraphics[width=1.0\textwidth]{images/TrDiC-Architecture.png} \caption{The 3D (top) and the 4D (bottom) of the 3D (bottom) and the 4D (bottom) of the 3D (bottom) and the 4D (bottom) of the 3D (bottom) and the 4D (bottom) of the 3D (bottom).} \label{TrDiC-Architecture}$

Even = 8 from 20 from 2000 = 1000 m

\n
$$
= 2 \times 200
$$
\n
$$
= 2 \times 0.466 \times 10^{-5}
$$
\nThus, $t = \frac{B_{max}}{\sqrt{2}} = \sqrt{\frac{100T}{C}} = \sqrt{\frac{(4 \pi \times 10^{-7})(1 \times 10^{3})}{3 \times 10^{3}}}$

\n
$$
= 2 \cdot 0.466 \times 10^{-6} = 2.05 \times 10^{-6}
$$
\n10. How much energy is present in one cubic meter of sunlight, just before hitting the
\nenergy density:

\n
$$
u = \frac{1}{2} \epsilon_{0} E^{2} + \frac{1}{2} \mu_{0} B^{2}
$$
\n
$$
= \frac{1}{\mu_{0}} B^{2}
$$
\n
$$
= \frac{1}{\mu_{0}} B^{2}
$$
\n
$$
= \frac{1}{\mu_{0}} B^{2}
$$
\n10. The sum of the object is the force, we find:

\n
$$
u = \frac{1}{2} \epsilon_{0} E^{2} + \frac{1}{2} \mu_{0} B^{2}
$$
\n
$$
= \frac{1}{\mu_{0}} B^{2}
$$
\n
$$
= \frac{1}{2} \mu_{0} B^{2}
$$
\n
$$
= \frac{1}{2} \mu_{0} B^{2}
$$
\n
$$
= \frac{1}{2} \left(\frac{8 \times 10^{2}}{2} \right) (1 \text{ m}^{2}) = \frac{1}{2} \left(\frac{2 \pi \epsilon^{T}}{\epsilon^{T}} \right) (1 \text{ m}^{2})
$$
\n
$$
= \frac{1}{2} \left(\frac{8 \times 10^{2}}{2} \right) (1 \text{ m}^{2}) = \frac{3.33 \times 10^{-6} \text{ J}}{3 \times 10^{-6} \text{ J}} = \frac{3.33 \times 10^{-6} \text{ J}}{3 \times 10^{-6} \text{ J}} = \frac{3.33 \times 10^{-6} \text{ J}}{3 \times 10^{-6} \text{ J}} = \frac{3.33 \times 10^{-6} \text{ J}}{3 \times 10^{-6} \text{ J}} = \frac{3.33 \times
$$

 $\,6\,$

 $\overline{}$

(c) Assume that the sunlight is absorbed 100% by the black solar panel which has dimensions of 0.5 $m \times 0.5$ m. What is the force of the sunlight on the panel in Newtons? [Hint: you do not need any answers from parts (a) or (b) to solve this part.

 $\,$ $\,$ $\,$

$$
\rho_{rad}^{abs} = \frac{F}{2} \left(1710^{3} (0.5)\right)^{2}
$$

F = $\frac{(1710^{3} (0.5))^{2}}{(3710^{8} - 7)}$
= 8.333...×10⁻⁷ N
= $\frac{8.33 \times 10^{-7} N}{N}$

 -0.91

(d) If the solar panels only respond to one innear power
maximum power output of the panel?
 $P_{m\alpha n} = I_{n}$ for $\frac{1}{2}$ unpolarised survivity that's
 α survivity α survivity α survivity that's = $(f*(0^{3})\times(0.5)^{2}\times(0.5))$ $=125W$

 $\overline{7}$

 $\lceil 6 \rceil$

6. An alternating input voltage $v_{\text{in}}(t)$ with amplitude V_{in} and angular frequency ω is applied from an ideal source to the circuit shown below.

8

(a) Using phasors, or otherwise, obtain (equilibrium) expressions for $v_{\text{in}}(t)$ and $v_{\text{out}}(t)$, assuming the current through the circuit is given by $i(t) = I \cos(\omega t)$. Determine both the relative amplitude and the relative phase as a function of frequency in each case.

 $i(t) = Tcos(\omega t)$

 $V_{L}(t) = Iutcos(\omega t + 90^{\circ})$

 $V_{c}(t) = \frac{1}{\sqrt{2\pi}} cos(\omega t - 90^{\circ})$

YV

 $\% = \tan^{-1}(\frac{v_{L}-v_{L}}{-\pi a}) = \tan^{-1}(\frac{\omega_{L}-\gamma_{L}}{R})$

 v_{in} (e) = \sqrt{m} cos (w t + pm)

 $=\pm\left(R^{2}+\left(\omega L-\frac{1}{UL}\right)^{2}\right)$

 $V_R(t) = \text{TECS}(\omega t)$

 $V_{in} = \sqrt{{V_{n}}^{2}+({V_{n}}-{V_{c}})^{2}}$

 $[16]$

 $V_{out}(t) = \frac{1}{2} V_{c}(1)$ $=\frac{1}{\frac{w}{\sqrt{w}}}cos(wt-90^{\circ})$
 V_{out}

(b) Obtain the leading expressions for the amplitude ratio $V_{\text{out}}/V_{\text{in}}$ in the limit that ω is very small and in the limit that ω is very large. Based on these expressions, what would be a possible use for this circuit?

 $V_{in} = \sqrt{\pi R^{2}+(\omega L-\kappa c)^{2}}$

 $W \rightarrow 0: \frac{V_{out}}{V_{in}} \rightarrow \frac{W_{tot}'}{\sqrt{V_{tot}}^2}$

いっか:

Vout

 $\overline{9}$

 $[10]$

Low pass filter => high frequency components

 $\frac{1}{2}$, $\frac{1}{2}$