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MIDTERM I

Physics 1C - Dantchev - Summer Quarter 2017

Good luck!
Indicate your reasoning clearly and include all essential calculations on the pages given. If your work is not entirely

on the given problem’s page, indicate exactly on what page it continues, or is located. Use the other side of the page
if you need that much extra space. It is in your interest to have the answer clearly stated at the end of the solution
of a given problem.

Start with the problem that is simplest for you, solve it and go to the next one. First solve those parts of the
problems that you find easy. After that concentrate on more difficult parts.
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Problem 1

A group of particles is traveling in a magnetic field of unknown magnitude and direction. You observe that a proton
moving at 2.50 km/s in the +x direction experiences a force of 2.50 × 10−16 N in the +y direction and an electron
moving at 4.75 km/s in the −z direction experiences a force of 4.75× 10−16 N in the +y-direction.

(a) What are the magnitude and direction of the magnetic field?
(b) What are the magnitude and direction of the magnetic force on an electron moving in the −y-direction at 3.20

km/s?
c) If the proton is replaced by a positron moving with the same velocity what will be the magnitude and the

direction of the force acting on it? (The positron has an electric charge of +1 e, a spin of 1/2, and the same mass as
an electron. The positron is the antiparticle or the antimatter counterpart of the electron.)

Solution of Problem 1

Since ~F = q~v × ~B one has that ~F is perpendicular to both ~v and ~B.

a) Since the force on the proton is ~Fp = ~jFp, with Fp = 2.50 × 10−16 N, one shall have no component of ~B along
~j, i.e., one has By = 0. Thus, ~B = ~iBx + ~kBz, i.e., the magnetic field is in the xz-plane. We know that ~vp = ~ivp,

with vp = 2.50 km/s. Then for the force on the proton we have ~Fp = e~vp × ~B = e[~ivp] × [~iBx + ~kBz] = −e~jvpBz.
Therefore,

Bz = −Fp/(evp) = −0.625 T.

For the electron we have ~Fe = −e~ve × ~B. One has Fe
~j = (−e)(−~kve)× [~iBx + ~kBz] = eveBx

~j. Solving for Bx gives

Bx = Fe/(eve) = 0.625 T.

The magnitude of the field is B =
√
B2

x +B2
z = 0.884 T.

The magnetic field is in the xz-plane. Calling θ the angle that the magnetic field makes with the +x-axis, we have
tan θ = Bz/Bx = −1, so θ = −45.0◦.

Therefore the magnetic field is in the xz-plane directed at 45.0◦ from the +x-axis toward the −z-axis, having a
magnitude of 0.884 T.

b) For the electron it is given that ~ve = −~jve, with ve = 3.20 km/s. Then, for the force on the electron we obtain
~Fe = (−e)~ve× ~B = (−e)[−~jve]× [~iBx +~kBz] = eve[−~kBx +~iBz] = [−3.20×10−16~i−3.20×10−16~k] N. For magnitude

of the force one has F =
√
F 2
x + F 2

z = 4.525× 10−16 N.
Calling θ the angle that the force makes with the −x-axis, we have tan θ = Fz/Fx = 1., which gives θ = 45.0◦. The

force is in the xz-plane and is directed at 45.0◦ from the −x-axis toward the −z-axis.
c) The magnetic force on the positron will be the same as that one of the proton because the force depends only

on the charge and the velocity of the particle which are given to be the same. The force does not depend, e.g., on the
mass of the particle.
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Problem 2

The figure shows two long wires carrying currents I1 and I2, respectively. The rectangular loop carries a current I.
Calculate:

a) the resultant force (give magnitude and direction) acting on the sides AB, DC, AD, and BC due to the magnetic
fields of the two wires;

b) the net force acting on the loop due to the straight wires;
c) the magnetic dipole moment of the loop ABCD - give magnitude and direction;
d) the net torque on the loop due to the straight wires.
Assume that |AB| = a = 30 cm, |BC| = b = 22 cm, h1 = 3 cm, h2 = 1 cm, I1 = 25 A, I2 = 10 A, and I = 40 A.
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Solution of Problem 2
a) In the region of the loop the field

−→
B1, due to the wire 1, is into the page, while

−→
B2 is out of the page. The forces

on the sides of the loop due to
−→
B1 and

−→
B2 are shown in the figure. One has:

FAB
y = 0; FAB

x = FAB,2
x − FAB,1

x =
µ0

2π
a
I2I

h2
− µ0

2π
a
I1I

h1 + b
=
µ0

2π
aI

(
I2
h2
− I1
h1 + b

)
' 2.16× 10−3N.

FDC
y = 0; FDC

x = FDC,1
x − FDC,2

x =
µ0

2π
a
I1I

h1
− µ0

2π
a
I2I

h2 + b
=
µ0

2π
aI

(
I1
h1
− I2
h2 + b

)
' 1.90× 10−3N.

FAD
x = 0; FAD

y = FAD,2
y − FAD,1

y =
µ0

2π
I2I

∫ h2+b

h2

dx

x
− µ0

2π
I1I

∫ h1+b

h1

dx

x
=
µ0

2π
I

(
I2 ln

h2 + b

h2
− I1 ln

h1 + b

h1

)
' −1.7× 10−4N.

−→
FBC = −

−→
FAD. Thus

FBC
x = 0, FBC

y = 1.7× 10−4N.

b)The net force on the loop is
−→
F =

−→
FAB +

−→
FBC +

−→
FDC +

−→
FAD =

−→
FAB +

−→
FDC . Thus, it follows that Fy = 0,

Fx = FAB
x + FDC

x = 4.06× 10−3N.

c) −→µ = I
−→
A, |
−→
A| = ab;

−→
A points into the page in accord with the direction of the current shown on the figure. Thus

µ = Iab = 2.64 A.m2.
d) The net torque on the loop is −→τ = 0 because:

� Explanation 1: −→µ is colinear with both
−→
B1 and

−→
B2.

� Explanation 2: All the forces lie in the same plane as the loop.



4

Problem 3

A solid conductor with radius a is supported by insulating disks on the axis of a conducting tube with inner radius
b and outer radius c, see the figure. The central conductor and tube carry equal currents I in opposite directions. The
currents are distributed uniformly over the cross sections of each conductor. Derive an expression for the magnitude
B(r) of the magnetic field B

(a) at points inside the central, solid conductor, i.e., for r < a.
(b) at points outside the central, solid conductor but inside the tube, i.e., for a < r < b.
(c) at points inside the outer conductor, i.e., for b < r < c.
(d) outside the tube, i.e., for r > c.
(e) Repeat the above for the case in which the current in the central, solid conductor is I1, the current in the tube

is I2, with I1 = I2 = I, and these currents are in the same direction rather than in opposite directions.�� ���
Solution of Problem 3

a) We apply the Ampere’s law and choose a circular loop with radius r centered on the axis of the inner conductor.
Because of the symmetry

∮
B(r) ·dl = B(r)(2πr), independent on the value of r. When r < a, for the enclosed current

Iencl one has that I/(πa2) is the current density in the inner conductor, and, thus, Ienlc = (πr2)× [I/(πa2)] = Ir2/a2.
From B(r)(2πr) = µ0Ir

2/a2, solving for B(r), one derives B(r) = µ0Ir/(2πa
2).

b) In that case the enclosed current is Iencl = I. Thus B(r) = µ0I/(2πr).

c) The current density in the outer conductor is I/[π(c2−b2)]. In calculating the enclosed current if the contribution
of the inner conductor is to be taken with a positive sign, the contribution of the outer conductor has to be with a
negative sign. Thus, the enclosed current is Iencl = I − I[π(r2 − b2)]/[π(c2 − b2)] = I{1 − [(r2 − b2)]/(c2 − b2)} =
I(c2 − r2)/(c2 − b2). Solving for B(r), one obtains B(r) = µ0I(c2 − r2)/[2πr(c2 − b2)].

d) In this case the enclosed current is Iencl = I − I = 0. Therefore B(r) = 0.

e) When 0 < r < a the answer stays the same as in the sub-case a): B(r) = µ0Ir/(2πa
2). When a < r < b the answer

is again the same as in sub-case b): B(r) = µ0I/(2πr). This is so, because the enclosed current in these two sub-cases
is the same as in the previous situation with the currents in the two conductors in opposite directions. When case
when b < r < c for calculating the enclosed current one has to add the contributions from the inner conductor and the
corresponding portion from the outer one. One obtains Iencl = I+I[π(r2−b2)]/[π(c2−b2)] = I(r2+c2−2b2)/(c2−b2)
and, thus, B(r) = µ0I(r2+c2−2b2)/[2πr(c2−b2)]. For r > c the enclosed currents is Iencl = I+I = 2I and, therefore,
B(r) = µ0I/(πr).


