PRACTICE PROBLEMS FOR MATH 33A FINAL (the majority of these are questions I considered for the midterm, but couldn't fit):

- 1. Know definitions, and statements of theorems. Especially some of the big theorems (Rank-Nullity theorem, QR factorization, Spectral theorem, SVD factorization)
- 2. Computations of any of the stuff we discussed (ie first handful of problems from just about any section of the book, especially ch 5, ch 6, ch 7, ch 8).
- 3. If I have a basis $\mathfrak{B} = \{ \overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, \overrightarrow{\mathbf{v}}_3, \cdots, \overrightarrow{\mathbf{v}}_n \}$ for \mathbb{R}^n , and I have a transformation T that sends each basis element to the difference of itself and the next one (wrapping around as follows)

$$T(\overrightarrow{\mathbf{v}}_{1}) = \overrightarrow{\mathbf{v}}_{1} - \overrightarrow{\mathbf{v}}_{2}$$
$$T(\overrightarrow{\mathbf{v}}_{2}) = \overrightarrow{\mathbf{v}}_{2} - \overrightarrow{\mathbf{v}}_{3}$$
$$\vdots$$
$$T(\overrightarrow{\mathbf{v}}_{n}) = \overrightarrow{\mathbf{v}}_{n} - \overrightarrow{\mathbf{v}}_{1}$$

find the matrix *B* for the transformation *T* in \mathfrak{B} -coordinates, and then show that the sum $\overrightarrow{\mathbf{v}}_1 + \overrightarrow{\mathbf{v}}_2 + \cdots + \overrightarrow{\mathbf{v}}_n$ is in the kernel. Is 1 an eigenvalue of *B*?

4. Suppose V is a subspace of \mathbb{R}^5 , with basis $\{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, \overrightarrow{\mathbf{v}}_3\}$. Let V^{\perp} be the orthogonal complement to V, having basis $\{\overrightarrow{\mathbf{v}}_4^{\perp}, \overrightarrow{\mathbf{v}}_5^{\perp}\}$. Let $T_V : \mathbb{R}^5 \to \mathbb{R}^5$ be the linear transformation of orthogonal projection onto V.

If we put the two bases of V and V^{\perp} together, we get a basis $\mathfrak{B} = \{ \overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, \overrightarrow{\mathbf{v}}_3, \overrightarrow{\mathbf{v}}_4^{\perp}, \overrightarrow{\mathbf{v}}_5^{\perp} \}$ for \mathbb{R}^5 . Find the matrix B for the linear transformation T_V in the coordinates of \mathfrak{B} .

- 5. Prove that if an $n \times n$ matrix has 1 as its only eigenvalue with algebraic and geometric multiplicity both equal to n, then the matrix must in fact be the identity matrix.
- 6. Give an example of a matrix that has 1 as its only eigenvalue, but that is not the identity matrix.
- 7. Give an example of a *real* 4x4 matrix whose eigenvalues are i, -i, 1, -1. It may be helpful to first decide on a 2x2 matrix with eigenvalues $\pm i$.
- 8. Let E_{λ_1} and E_{λ_2} be eigenspaces for two distinct eigenvalues $\lambda_1 \neq \lambda_2$. What is the intersection $E_{\lambda_1} \cap E_{\lambda_2}$?
- 9. Diagonalize $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ and use this to find the diagonalization of A^4
- 10. Suppose A was an $n \times n$ matrix with n distinct eigenvalues all between 0 and 0.5. Use diagonalization to find the limit $\lim_{n\to\infty} A^n$.
- 11. Prove that, if A is similar to B, then the characteristic polynomials $f_A(\lambda)$ and $f_B(\lambda)$ are the same. Hint: $I = S^{-1}S = S^{-1}IS$
- 12. What is e^A for a matrix A? One possibility would be to try to define this using the Taylor series for e^x , plugging in the matrix A in place of x. Use this approach (look up the Taylor series for e^x if you've forgotten) and work out a simple formula for e^A in the case that A is diagonal. What if A isn't diagonal, but is diagonalizable?
- 13. Suppose A is an $n \times n$ symmetric matrix.

Prove that $(A\overrightarrow{\mathbf{v}})\cdot\overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{v}}\cdot(A\overrightarrow{\mathbf{w}})$ for any two vectors $\overrightarrow{\mathbf{v}},\overrightarrow{\mathbf{w}}$ in \mathbb{R}^n . Prove that, if $\overrightarrow{\mathbf{v}}\perp\overrightarrow{\mathbf{w}}$ and $\overrightarrow{\mathbf{v}}$ is an eigenvector for A, then $A\overrightarrow{\mathbf{w}}\perp\overrightarrow{\mathbf{v}}$.

14. If A is a 10x12 matrix with rank 7, how many of its singular values must be zero?