## Exercise 1 (7 points).

Let D be the following two dimensional domain:  $D := \{(x,y) \in \mathbb{R}^2 : 1 \le x \le e; 0 \le y \le \ln(x)\},$ where ln denotes the natural logarithm and the number e denotes its base, i.e.  $e \approx 2.71$ .

- (1) Sketch the domain D and compute its area.
- (2) Let us define the domain  $\widetilde{D}$  as the part of the rectangle  $[1,e]\times[0,1]$  that is above D. Sketch D and compute its area.
- (3) Compute  $\int \int_{D} \frac{e^{2y}}{x} dA(x,y).$

Now rotate the domain D around the x-axes to obtain a solid 3D object which is axially symmetric w.r.t. the x-axes. Call this domain W.

(4) Sketch the domain W and compute its volume.

Hint: find out what are the cross sections of this object if you cut it with planes parallel to the y-axis.

(5) Compute 
$$\iint_W yz \, dV(x, y, z)$$
.

Hint: use the previously determined cross sections and use eventually polar coordinates in the yz-plane.



Avea (0)= 
$$S_{\ln xdx}$$

$$= (x \ln x)e^{x}$$

$$= e^{-e} = e^{+e}$$



$$+0 3) 550 = 50 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 = 500 =$$

$$= \int_{1}^{6} \frac{e^{2}}{2} \frac{dx}{dx}$$

$$= \int_{1}^{6} \frac{e^{2}}{2} \frac{dx}{dx}$$

$$= \frac{e^{2}}{2} \frac{1}{2} \frac{dx}{dx}$$

$$= \frac{e^{2}}{2} \frac{1}{2} \frac{1}{2} \frac{dx}{dx}$$

$$= \frac{e^{2}}{2} \frac{1}{2} \frac{$$

cross sections wir.t. x axis are disks of vadius lux Thus, the disk areas are Thy?

Contegral of the disk areas from x=1 to x=e.

V(w)= TTS PS dydx (1) Sketch the domains of integration and compute the following difference

$$\int_{0}^{2} \int_{x/2}^{1} \cos(y^{2}) \, \mathrm{d}y \, \mathrm{d}x - \int_{0}^{1} \int_{x}^{1} \cos(y^{2}) \, \mathrm{d}y \, \mathrm{d}x.$$

Hint: interchange the order of integration in both integrals. You may write the difference after as a single integral.

Sketch the domain of integration, find an appropriate change of variable and compute

$$\int \int_D \frac{1}{\cos^2(x^2 + y^2)} \, \mathrm{d}A(x, y),$$

where  $D = \{\pi/6 \le x^2 + y^2 \le \pi/4\}$ .

Integral I suntch: y wires from 0 to 2 y Integral I switch. I naises from 0 to 1' x varies from 0 to d

x Signos(y)dydx - So Signos(y)dydx = 1, 24 cos(2,792 - 20 Acos(2,792) = 2/6/1005(4) dy - 5/4/005(4) do = Sywoly)dy



X= 10000 - A=NN/NA ' Jacopien = L X3+A= L3

= 2 /2 /2 (1.) grape

= = (0-3)+12 = 1

Let us consider the following disks  $C_1 := \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$  and  $C_2 := \{(x,y) \in \mathbb{R}^2 : x^2 + (y - \sqrt{2})^2 \le 1\}$ . We consider moreover the following domains:

- $D_1$  is bounded by the lines y = x,  $y = \sqrt{2} x$ ,  $y = \sqrt{2} + x$  and y = -x;
- $D_2 = D_1 \cap C_1$ , a circular sector of the disk  $C_1$ ;
- $D_3 = D_1 \cap C_2$ , a circular sector of the disk  $C_2$ ;
- $D_4 = D_1 \setminus D_2$ , the part of  $D_1$  above  $D_2$ .
- $D_5 = C_1 \cap C_2$ , the intersection of the disks  $C_1$  and  $C_2$ ;

Let us consider the function  $f: \mathbb{R}^2 \to \mathbb{R}$  defined as  $f(x,y) = x^2 + y^2$ .

(1) Sketch the domain of  $D_1$  and the disks  $C_1$  and  $C_2$ , then compute  $\int \int_{D_1} f(x,y) dA(x,y)$ .

Hint: you may use the change of variables formula with the mapping  $G(u,v) = \left(\frac{\sqrt{2}}{2}u + \frac{\sqrt{2}}{2}v, -\frac{\sqrt{2}}{2}u + \frac{\sqrt{2}}{2}v\right)$ . In this case show that  $D_1$  is the image of the square  $\widetilde{D}_1 = [-1,0] \times [0,1]$  through G.

- (2) Sketch the domain  $D_2$ . Using eventually polar coordinates, compute  $\int \int_{D_2} f(x,y) dA(x,y)$ .
- (3) Sketch the domain  $D_3$ . Using eventually polar coordinates, compute  $\int \int_{D_3} f(x,y) dA(x,y)$ .
- (4) Sketch  $D_4$  and compute  $\int \int_{D_4} f(x,y) dA(x,y)$ .
- (5) Sketch  $D_5$  and compute  $\int \int_{D_5} f(x,y) dA(x,y)$ .

