u=1 V=1

Problem 4. (4)

Let S be a surface given by the parametric equation $r(u, v) = ui + vj + (u^2 - 2v^2)k$. Find the equation of the tangent plane of S at the point (1, 1, -1).

$$\vec{r}_{u} = 1i + 0\hat{j} + 2uk$$
 $\vec{r}_{v} = 0\hat{i} + 1\hat{j} - 4vk$
 $\vec{r}_{v} = 0\hat{i} + 1\hat{j} - 4vk$
 $\vec{r}_{v} = 1\hat{i} + 0\hat{j} + 1\hat{k}$
 $\vec{r}_{v} = 1\hat{i} + 0\hat{j} + 2uk$
 $\vec{r}_{v} = 1\hat{i} + 0\hat{j} + 1\hat{k}$
 $\vec{r}_{v} = -2u\hat{i} + 4v\hat{j} + 1\hat{k}$
 $\vec{r}_{v} = -2u\hat{i} + 4v\hat{j} + 1\hat{k}$

Equation of the Tangent Plane
$$-2(x-1)+4(y-1)+1(z-(-1))-(-1)$$

$$-2(x-1)+4(y-1)+(z+1)=0$$

Problem 5. (4)

Evaluate the surface integral $\int \int_S (x^2 + y^2) dS$ where S is the sphere given by the equation $x^2 + y^2 + z^2 = a^2$.

Y: a sin P cos 0 Y: a sin P sin 0 Z: a cos 0

SS(x2+y2)ds

S ((a sin 30 cos 6 + a sin 0 sin 6) a sin 0 d 0 d 6

S ((a sin 30) (a sin 0)

Sen 5 (a sin 30) d 0 d 6

- 2π a 3 (- cos 0 d

2π a 4 4 4

2π a 2 4 4 4

2π a 2 4 6 3 π

-

1	14
2	2
3	4
4	14
5	2
-	14.5

1-009

Problem 2. (4)

Evaluate the following line integral

$$\int_{\mathcal{C}} 2y dx - x dy$$

by two different methods:(a) compute it directly; (b) use the Green theorem to compute it. Here C is the unit circle $x^2 + y^2 = 1$ with the counter clockwise orientation.

directly

(a) Ostszm (x) cost => -sintdt y: sint => costdt

52 [2sint (-sint) dt - cost (cost) dt]

[27 [-(2)(sin2t) - cost2] dt

[[-Zsintz-(1-sintz) dt

(-1-sint)dt

Green's theorem

 $\int_{0}^{2\pi} \int_{0}^{1} \left(\frac{d(x)}{dx} - \frac{d(2y)}{dy} \right) dr d\theta$

= - X ADOUGE

MATH 32B Midterm II, Fall 2010

Name:

TA's Name and Section Number:

Ricketson - 1A

Problem 1. (4)

Find the line integral

 $\int_C x^3 dx + y^2 dy + z dz,$

where C is the line segment connecting the point P = (0, 0, 1) and Q = (1, 2, 4), and C is oriented by the direction from P to Q.

Perunctus

x: (1-t)0+t=t

7: (1-t)0+Zt=Zt

Z: (1-t) 1+4t=1-1+4t=1+3t

 $\int_{0}^{1} \left[t^{3}(1dt) + 4t^{2}(2dt) + (1+3t)(34t) \right]$ $= \int_{0}^{1} \left(t^{3} + 8t^{2} + 3 + 9t \right) dt$ $= \left[t^{3}_{4} + 8t^{2}_{3} + 3t + 9t^{2}_{2} \right]_{0}^{1}$ $= \left[t^{4}_{4} + 8t^{2}_{3} + 3t + 9t^{2}_{2} \right]_{0}^{1}$

アルイン

ディ×デ

=

Egu