Department of Materials Science and Engineering University of California at Los Angeles

MSE 104, Spring 2022 Quiz No. 2

Show all work and include units to receive full credit. Check that all parts are answered.

1. Electrical Conductivity of Metals

- (a) Does sterling silver (an alloy of silver) have higher, same, or lower conductivity than that of pure silver? Justify your answer (6 pts).
- (b) State for copper whether electrical conductivity will increase or decrease with increasing temperature. Justify your answer. (6 pts)

(c) Describe in your own words what an intrinsic semiconductor is? (3 pts)

(d) Describe in your own words what an extrinsic semiconductor is? (3 pts)

(e) When ceramic superconductor was immersed in liquid nitrogen and cooled below its critical temperature, it was able to levitate which of the following (6 pts)?

- A. itself above liquid surface
- B. a magnet
- C. itself above glass surface
- D. a sugar cube

2. Semiconductors

- (a) Draw a schematic plot and label all characteristic regions for the carrier concentration n versus temperature T for two materials (10 pts):
 - A. an extrinsic n-type semiconductor
 - B. an intrinsic semiconductor.

Question	Points
1 (24 pts)	
2 (38 pts)	
3 (22 pts)	
4 (16 pts)	
Total	

- (b) Name the majority charge carriers in cadmium (Cd) doped GaN semiconductor (4 pts)
- (c) Name the majority charge carriers in gallium (Ga) doped CdS semiconductor (4 pts)
- (d) A phosphorus (P)-doped silicon has at room temperature a conductivity of 0.25 Ω⁻¹ m⁻¹. What is the concentration of the majority charge carriers (in m⁻³)? The mobilities of electrons and holes in doped silicon as function of temperature are shown in graphs below (logarithmic scale). You will be given full credit as long as are within reasonable error limits and your process is correct (10 pts)

(a) Briefly describe the three main origins of polarization in solid-state materials. (10 pts)

(b) A 1.0 kV voltage is applied on a dielectric film capacitor having an area of 100 cm² and a thickness of 10 μ m (micrometers). The dielectric material has a dielectric constant of 3.0. Compute the capacitance and the stored energy density (J/cm³). (12 pts)

4. Optical Properties

- (a) Give a 1-2 sentence explanation why adding lead (Pb) oxide in glass increases its index of refraction (4 pts)
- (b) ZnO has a bandgap of 3.4 eV. Is a ZnO crystal transparent, opaque, or colored? Provide a 1-2 sentence explanation (6 pts)
- (c) A laser beam is (choose one answer) (6 pts)
 - A. coherent
 - B. of high intensity
 - C. highly collimated
 - D. all of the above

Useful equations, units, tables and constants: $N_A = 6.02 \text{ x } 10^{23}$ /mole Units: $(\Omega-m)^{-1} = C/(m-V-sec)$ $k = 8.62 \text{ x } 10^{-5} \text{ eV/atom-K}$ $e = 1.602 \text{ x} 10^{-19} \text{ C}$ $\varepsilon_{o} = 8.85 \text{ x } 10^{-12} \text{ F/m} [C/(V-m) \text{ or F is C/V}]$ C = Q/VE = V/1 $P = \Sigma q d/V_c$ p=qd $C = \varepsilon_o A/l$ (vacuum) $C = \varepsilon A/l$ (dielectric material) $D_o = \varepsilon_o E$ (vacuum) $D = \varepsilon E = \varepsilon_0 E + P$ (dielectric material) $\varepsilon_r = \varepsilon/\varepsilon_o$ Stored dielectric energy equals to $\frac{1}{2}CV^2$ $\sigma = 1/\rho$, where σ is electrical conductivity and ρ is electrical resistivity $\rho = RA/l$, $\sigma_{total} = n|e|\mu_e + p|e|\mu_h$ (if there are any holes) $\sigma \approx \sigma_{o} \exp(-Eg/2kT)$ $\sigma \approx \sigma_{\rm o} \exp\left(-\Delta E/kT\right)$

								-	Metal								
				Kau					Nonm	etal							
				29 Cu	Ator	mic nui ibol	mber		Intern	nediate			11/4	1/0	VIA	VIIA	2 He
1.0080 3 Li	4 Be			63.54	Ator	mic wei	ight	10000				5 B	6 C	7 N	8 0	9 F	4.0026 10 Ne
11 Na	12 Mg		IVB	VR	VIR	VIIR		VIII		IR	11.12	10.811 13 Al	12.011 14 Si	14.007 15 P	15.999 16 S	18.998 17 Cl	18 Ar
19 K	24.312 20 Ca	21 Sc	22 Ti	23 V	24 Cr 51,006	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	28.086 32 Ge 72.50	30.974 33 As 74.922	32.064 34 Se 79.06	35.453 35 Br 70.01	39.948 36 Kr
37 Rb 85.47	38 Sr 87.62	39 Y 88.01	40 Zr 01.22	41 Nb 92.91	42 Mo	43 Tc (99)	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53	54 Xe
55 Cs	56 Ba	Rare earth	72 Hf 178.49	73 Ta	74 W	75 Re 1862	76 0s	77 Ir 192.2	78 Pt	79 Au	80 Hg 200.59	81 TI 204 37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	Acti- nide	170.40	100.00	100.00	100.2	150.2	1 102.2	1155.05	155.57	200.00	204.07	207,13	200.00	(210)	(210)	(446)

Factor by Which Multiplied	Prefix			
109	giga			
10^{6}	mega			
10^{3}	kilo			
10^{-2}	centi ^a			
10^{-3}	milli			
10^{-6}	micro			
10^{-9}	nano			
10^{-12}	pico			

Table 18.6 Primary and Derived Units for Various Electrical Parameters and Field Vectors

		SI Units				
Quantity	Symbol	Derived	Primary			
Electric potential	V	volt	kg-m ² /s ² -C			
Electric current	I	ampere	C/s			
Electric field strength	Е	volt/meter	kg-m/s ² -C			
Resistance	R	ohm	kg-m ² /s-C ²			
Resistivity	ρ	ohm-meter	kg-m ³ /s-C ²			
Conductivity	σ	(ohm-meter) ⁻¹	s-C ² /kg-m ³			
Electric charge	0	coulomb	С			
Capacitance	\tilde{c}	farad	s ² -C ² /kg-m ²			
Permittivity	e	farad/meter	s2C2/kg-m3			
Dielectric constant	6,	ratio	ratio			
Dielectric displacement	Ď	farad-volt/m ²	C/m ²			
Electric polarization	Р	farad-volt/m ²	C/m ²			

